Download presentation
Presentation is loading. Please wait.
Published byHoratio Rice Modified over 9 years ago
1
Dark Energy: current theoretical issues and progress toward future experiments A. Albrecht UC Davis KITPC Colloquium November 4 2009
2
Dark Energy (accelerating) Dark Matter (Gravitating) Ordinary Matter (observed in labs) 95% of the cosmic matter/energy is a mystery. It has never been observed even in our best laboratories
3
American Association for the Advancement of Science
4
…at the moment, the nature of dark energy is arguably the murkiest question in physics--and the one that, when answered, may shed the most light.
6
Oct 23 2009
7
?
8
Supernova Preferred by data c. 2003 Amount of gravitating matter Amount of w=-1 matter (“Dark energy”) “Ordinary” non accelerating matter Cosmic acceleration Accelerating matter is required to fit current data
9
Cosmic acceleration Accelerating matter is required to fit current data Supernova Amount of w=-1 matter (“Dark energy”) “Ordinary” non accelerating matter Preferred by data c. 2008 BAO Kowalski, et al., Ap.J.. (2008) Amount of gravitating matter
10
Cosmic acceleration Accelerating matter is required to fit current data Supernova Amount of w=-1 matter (“Dark energy”) “Ordinary” non accelerating matter Preferred by data c. 2008 BAO Kowalski, et al., Ap.J.. (2008) (Includes dark matter) Amount of gravitating matter
11
Dark energy appears to be the dominant component of the physical Universe, yet there is no persuasive theoretical explanation. The acceleration of the Universe is, along with dark matter, the observed phenomenon which most directly demonstrates that our fundamental theories of particles and gravity are either incorrect or incomplete. Most experts believe that nothing short of a revolution in our understanding of fundamental physics* will be required to achieve a full understanding of the cosmic acceleration. For these reasons, the nature of dark energy ranks among the very most compelling of all outstanding problems in physical science. These circumstances demand an ambitious observational program to determine the dark energy properties as well as possible. From the Dark Energy Task Force report (2006) www.nsf.gov/mps/ast/detf.jspwww.nsf.gov/mps/ast/detf.jsp, astro-ph/0690591 *My emphasis
12
Dark energy appears to be the dominant component of the physical Universe, yet there is no persuasive theoretical explanation. The acceleration of the Universe is, along with dark matter, the observed phenomenon which most directly demonstrates that our fundamental theories of particles and gravity are either incorrect or incomplete. Most experts believe that nothing short of a revolution in our understanding of fundamental physics* will be required to achieve a full understanding of the cosmic acceleration. For these reasons, the nature of dark energy ranks among the very most compelling of all outstanding problems in physical science. These circumstances demand an ambitious observational program to determine the dark energy properties as well as possible. From the Dark Energy Task Force report (2006) www.nsf.gov/mps/ast/detf.jspwww.nsf.gov/mps/ast/detf.jsp, astro-ph/0690591 *My emphasis DETF = a HEPAP/AAAC subpanel to guide planning of future dark energy experiments More info here
13
This talk Part 1: A few attempts to explain dark energy Motivations, problems and other comments Theme: We may not know where this revolution is taking us, but it is already underway: Part 2 Planning new experiments - DETF - Next questions
14
Some general issues: Properties: Solve GR for the scale factor a of the Universe (a=1 today): Positive acceleration clearly requires (unlike any known constituent of the Universe) or a non-zero cosmological constant or an alteration to General Relativity.
15
Some general issues: Properties: Solve GR for the scale factor a of the Universe (a=1 today): Positive acceleration clearly requires (unlike any known constituent of the Universe) or a non-zero cosmological constant or an alteration to General Relativity. See work by Pengjie Zhang (SHAO)
16
Today, Many field models require a particle mass of Some general issues: Numbers: from
17
Today, Many field models require a particle mass of Some general issues: Numbers: from Where do these come from and how are they protected from quantum corrections?
18
Some general issues: Properties: Solve GR for the scale factor a of the Universe (a=1 today): Positive acceleration clearly requires (unlike any known constituent of the Universe) or a non-zero cosmological constant or an alteration to General Relativity. Two “familiar” ways to achieve acceleration: 1) Einstein’s cosmological constant and relatives 2) Whatever drove inflation: Dynamical, Scalar field?
19
Specific ideas: i) A cosmological constant Nice “textbook” solutions BUT Deep problems/impacts re fundamental physics Vacuum energy problem (we’ve gotten “nowhere” with this) = 10 120 0 ? Vacuum Fluctuations
20
Specific ideas: i) A cosmological constant Nice “textbook” solutions BUT Deep problems/impacts re fundamental physics The string theory landscape (a radically different idea of what we mean by a fundamental theory)
21
Specific ideas: i) A cosmological constant Nice “textbook” solutions BUT Deep problems/impacts re fundamental physics The string theory landscape (a radically different idea of what we mean by a fundamental theory) “Theory of Everything” “Theory of Anything” ?
22
Specific ideas: i) A cosmological constant Nice “textbook” solutions BUT Deep problems/impacts re fundamental physics The string theory landscape (a radically different idea of what we mean by a fundamental theory) Not exactly a cosmological constant
23
Specific ideas: i) A cosmological constant Nice “textbook” solutions BUT Deep problems/impacts re fundamental physics De Sitter limit: Horizon Finite Entropy Banks, Fischler, Susskind, AA & Sorbo etc
24
“De Sitter Space: The ultimate equilibrium for the universe? Horizon Quantum effects: Hawking Temperature
25
“De Sitter Space: The ultimate equilibrium for the universe? Horizon Quantum effects: Hawking Temperature Does this imply (via “ “) a finite Hilbert space for physics? Banks, Fischler
26
Specific ideas: i) A cosmological constant Nice “textbook” solutions BUT Deep problems/impacts re fundamental physics De Sitter limit: Horizon Finite Entropy Equilibrium Cosmology Rare Fluctuation Dyson, Kleban & Susskind; AA & Sorbo etc
27
Specific ideas: i) A cosmological constant Nice “textbook” solutions BUT Deep problems/impacts re fundamental physics De Sitter limit: Horizon Finite Entropy Equilibrium Cosmology Rare Fluctuation “Boltzmann’s Brain” ? Dyson, Kleban & Susskind; AA & Sorbo etc
28
Specific ideas: i) A cosmological constant Nice “textbook” solutions BUT Deep problems/impacts re fundamental physics De Sitter limit: Horizon Finite Entropy Equilibrium Cosmology Rare Fluctuation Dyson, Kleban & Susskind; AA & Sorbo etc This picture is in deep conflict with observation
29
Specific ideas: i) A cosmological constant Nice “textbook” solutions BUT Deep problems/impacts re fundamental physics De Sitter limit: Horizon Finite Entropy Equilibrium Cosmology Rare Fluctuation Dyson, Kleban & Susskind; AA & Sorbo etc This picture is in deep conflict with observation (resolved by landscape?)
30
Specific ideas: i) A cosmological constant Nice “textbook” solutions BUT Deep problems/impacts re fundamental physics De Sitter limit: Horizon Finite Entropy Equilibrium Cosmology Rare Fluctuation Dyson, Kleban & Susskind; AA & Sorbo etc This picture forms a nice foundation for inflationary cosmology
31
Specific ideas: i) A cosmological constant Nice “textbook” solutions BUT Deep problems/impacts re fundamental physics De Sitter limit: Horizon Finite Entropy Equilibrium Cosmology Rare Fluctuation Dyson, Kleban & Susskind; AA & Sorbo etc This picture forms a nice foundation for inflationary cosmology Contrast with eternal inflation!
32
Specific ideas: i) A cosmological constant Nice “textbook” solutions BUT Deep problems/impacts re fundamental physics De Sitter limit: Horizon Finite Entropy Equilibrium Cosmology Rare Fluctuation Dyson, Kleban & Susskind; AA & Sorbo etc This picture forms a nice foundation for inflationary cosmology Contrast with eternal inflation! AA 2009
33
Specific ideas: i) A cosmological constant Nice “textbook” solutions BUT Deep problems/impacts re fundamental physics De Sitter limit: Horizon Finite Entropy Equilibrium Cosmology Rare Fluctuation Dyson, Kleban & Susskind; AA & Sorbo etc Perhaps “saved” from this discussion by instability of De Sitter space (i.e. Woodard et al)
34
Specific ideas: i) A cosmological constant Nice “textbook” solutions BUT Deep problems/impacts re fundamental physics is not the “simple option”
35
Some general issues: Alternative Explanations?: Is there a less dramatic explanation of the data?
36
Some general issues: Alternative Explanations?: Is there a less dramatic explanation of the data? For example is supernova dimming due to dust? (Aguirre) γ-axion interactions? (Csaki et al) Evolution of SN properties? (Drell et al) Many of these are under increasing pressure from data, but such skepticism is critically important.
37
Some general issues: Alternative Explanations?: Is there a less dramatic explanation of the data? Or perhaps Nonlocal gravity from loop corrections (Woodard & Deser) Misinterpretation of a genuinely inhomogeneous universe (ie. Kolb and collaborators)
38
Recycle inflation ideas (resurrect dream?) Serious unresolved problems Explaining/ protecting 5 th force problem Vacuum energy problem What is the Q field? (inherited from inflation) Why now? (Often not a separate problem) Specific ideas: ii) A scalar field (“Quintessence”)
39
Recycle inflation ideas (resurrect dream?) Serious unresolved problems Explaining/ protecting 5 th force problem Vacuum energy problem What is the Q field? (inherited from inflation) Why now? (Often not a separate problem) Specific ideas: ii) A scalar field (“Quintessence”) Inspired by
40
Recycle inflation ideas (resurrect dream?) Serious unresolved problems Explaining/ protecting 5 th force problem Vacuum energy problem What is the Q field? (inherited from inflation) Why now? (Often not a separate problem) Specific ideas: ii) A scalar field (“Quintessence”) Result?
41
V Learned from inflation: A slowly rolling (nearly) homogeneous scalar field can accelerate the universe
42
V Dynamical
43
V Learned from inflation: A slowly rolling (nearly) homogeneous scalar field can accelerate the universe Dynamical Rolling scalar field dark energy is called “quintessence”
44
Some quintessence potentials Exponential (Wetterich, Peebles & Ratra) PNGB aka Axion (Frieman et al) Exponential with prefactor (AA & Skordis) Inverse Power Law (Ratra & Peebles, Steinhardt et al)
45
Some quintessence potentials Exponential (Wetterich, Peebles & Ratra) PNGB aka Axion (Frieman et al) Exponential with prefactor (AA & Skordis) Inverse Power Law (Ratra & Peebles, Steinhardt et al)
46
Some quintessence potentials Exponential (Wetterich, Peebles & Ratra) PNGB aka Axion (Frieman et al) Exponential with prefactor (AA & Skordis) Inverse Power Law (Ratra & Peebles, Steinhardt et al)
47
Some quintessence potentials Exponential (Wetterich, Peebles & Ratra) PNGB aka Axion (Frieman et al) Exponential with prefactor (AA & Skordis) Inverse Power Law (Ratra & Peebles, Steinhardt et al)
48
Some quintessence potentials Exponential (Wetterich, Peebles & Ratra) PNGB aka Axion (Frieman et al) Exponential with prefactor (AA & Skordis) Inverse Power Law (Ratra & Peebles, Steinhardt et al)
49
Some quintessence potentials Exponential (Wetterich, Peebles & Ratra) PNGB aka Axion (Frieman et al) Exponential with prefactor (AA & Skordis) Inverse Power Law (Ratra & Peebles, Steinhardt et al)
50
The potentials Exponential (Wetterich, Peebles & Ratra) PNGB aka Axion (Frieman et al) Exponential with prefactor (AA & Skordis) Inverse Power Law (Ratra & Peebles, Steinhardt et al) Stronger than average motivations & interest
51
The potentials Exponential (Wetterich, Peebles & Ratra) PNGB aka Axion (Frieman et al) Exponential with prefactor (AA & Skordis) Inverse Power Law (Ratra & Peebles, Steinhardt et al) Stronger than average motivations & interest See important work on this topic by Mingzhi Li et al and Bo Feng et al
52
The potentials Exponential (Wetterich, Peebles & Ratra) PNGB aka Axion (Frieman et al) Exponential with prefactor (AA & Skordis) Inverse Power Law (Ratra & Peebles, Steinhardt et al) Stronger than average motivations & interest See important work on this topic by Mingzhi Li et al and Bo Feng et al
53
…they cover a variety of behavior. a = “cosmic scale factor” ≈ time
54
Dark energy and the ego test
55
Specific ideas: ii) A scalar field (“Quintessence”) Illustration: Exponential with prefactor (EwP) models: All parameters O(1) in Planck units, motivations/protections from extra dimensions & quantum gravity AA & Skordis 1999 Burgess & collaborators (e.g. )
56
Specific ideas: ii) A scalar field (“Quintessence”) Illustration: Exponential with prefactor (EwP) models: All parameters O(1) in Planck units, motivations/protections from extra dimensions & quantum gravity AA & Skordis 1999 Burgess & collaborators (e.g. ) AA & Skordis 1999
57
Specific ideas: ii) A scalar field (“Quintessence”) Illustration: Exponential with prefactor (EwP) models: All parameters O(1) in Planck units, motivations/protections from extra dimensions & quantum gravity AA & Skordis 1999 Burgess & collaborators (e.g. ) AA & Skordis 1999
58
Specific ideas: ii) A scalar field (“Quintessence”) Illustration: Exponential with prefactor (EwP) models: AA & Skordis 1999
59
Specific ideas: iii) A mass varying neutrinos (“MaVaNs”) Exploit Issues Origin of “acceleron” (varies neutrino mass, accelerates the universe) gravitational collapse Faradon, Nelson & Weiner Afshordi et al 2005 Spitzer 2006
60
Specific ideas: iii) A mass varying neutrinos (“MaVaNs”) Exploit Issues Origin of “acceleron” (varies neutrino mass, accelerates the universe) gravitational collapse Faradon, Nelson & Weiner Afshordi et al 2005 Spitzer 2006 “ ”
61
Specific ideas: iii) A mass varying neutrinos (“MaVaNs”) Exploit Issues Origin of “acceleron” (varies neutrino mass, accelerates the universe) gravitational collapse Faradon, Nelson & Weiner Afshordi et al 2005 Spitzer 2006 “ ”
62
Specific ideas: iv) Modify Gravity Not something to be done lightly, but given our confusion about cosmic acceleration, very much worth considering. Many deep technical issues e.g. DGP (Dvali, Gabadadze and Porrati) Charmousis et al Ghosts
63
Specific ideas: iv) Modify Gravity Not something to be done lightly, but given our confusion about cosmic acceleration, very much worth considering. Many deep technical issues e.g. DGP (Dvali, Gabadadze and Porrati) Charmousis et al Ghosts Important work by Pengjie Zhang
64
This talk Part 1: A few attempts to explain dark energy - Motivations, Problems and other comments Theme: We may not know where this revolution is taking us, but it is already underway: Part 2 Planning new experiments - DETF - Next questions
65
This talk Part 1: A few attempts to explain dark energy - Motivations, Problems and other comments Theme: We may not know where this revolution is taking us, but it is already underway: Part 2 Planning new experiments - DETF - Next questions
66
This talk Part 1: A few attempts to explain dark energy - Motivations, Problems and other comments Theme: We may not know where this revolution is taking us, but it is already underway: Part 2 Planning new experiments - DETF - Next questions
67
This talk Part 1: A few attempts to explain dark energy - Motivations, Problems and other comments Theme: We may not know where this revolution is taking us, but it is already underway: Part 2 Planning new experiments - DETF - Next questions
68
Astronomy Primer for Dark Energy Solve GR for the scale factor a of the Universe (a=1 today): Positive acceleration clearly requires unlike any known constituent of the Universe, or a non-zero cosmological constant - or an alteration to General Relativity. The second basic equation is Today we have From DETF
69
Astronomy Primer for Dark Energy Solve GR for the scale factor a of the Universe (a=1 today): Positive acceleration clearly requires unlike any known constituent of the Universe, or a non-zero cosmological constant - or an alteration to General Relativity. The second basic equation is Today we have From DETF See also Frieman Huterer and Turner for a review
70
Hubble Parameter We can rewrite this as To get the generalization that applies not just now (a=1), we need to distinguish between non-relativistic matter and relativistic matter. We also generalize to dark energy with a constant w, not necessarily equal to -1: Dark Energy curvature rel. matter non-rel. matter
71
What are the observable quantities? Expansion factor a is directly observed by redshifting of emitted photons: a=1/(1+z), z is “redshift.” Time is not a direct observable (for present discussion). A measure of elapsed time is the distance traversed by an emitted photon: This distance-redshift relation is one of the diagnostics of dark energy. Given a value for curvature, there is 1-1 map between D(z) and w(a). Distance is manifested by changes in flux, subtended angle, and sky densities of objects at fixed luminosity, proper size, and space density. These are one class of observable quantities for dark-energy study.
72
Another observable quantity: The progress of gravitational collapse is damped by expansion of the Universe. Density fluctuations arising from inflation-era quantum fluctuations increase their amplitude with time. Quantify this by the growth factor g of density fluctuations in linear perturbation theory. GR gives: This growth-redshift relation is the second diagnostic of dark energy. If GR is correct, there is 1-1 map between D(z) and g(z). If GR is incorrect, observed quantities may fail to obey this relation. Growth factor is determined by measuring the density fluctuations in nearby dark matter (!), comparing to those seen at z=1088 by WMAP.
73
Another observable quantity: The progress of gravitational collapse is damped by expansion of the Universe. Density fluctuations arising from inflation-era quantum fluctuations increase their amplitude with time. Quantify this by the growth factor g of density fluctuations in linear perturbation theory. GR gives: This growth-redshift relation is the second diagnostic of dark energy. If GR is correct, there is 1-1 map between D(z) and g(z). If GR is incorrect, observed quantities may fail to obey this relation. Growth factor is determined by measuring the density fluctuations in nearby dark matter (!), comparing to those seen at z=1088 by WMAP.
74
What are the observable quantities? Future dark-energy experiments will require percent-level precision on the primary observables D(z) and g(z).
75
Supernovae (exploding stars) can have well determined luminosities and can be (briefly) as bright as an entire galaxy. As very bright “standard candles” they can be used to probe great cosmic distances. Supernova
76
Dark Energy with Type Ia Supernovae Exploding white dwarf stars: mass exceeds Chandrasekhar limit. If luminosity is fixed, received flux gives relative distance via Qf=L/4 D 2. SNIa are not homogeneous events. Are all luminosity- affecting variables manifested in observed properties of the explosion (light curves, spectra)? Supernovae Detected in HST GOODS Survey (Riess et al)
77
Dark Energy with Type Ia Supernovae Example of SN data: HST GOODS Survey (Riess et al) Clear evidence of acceleration!
78
Riess et al astro-ph/0611572
79
Dark Energy with Baryon Acoustic Oscillations Acoustic waves propagate in the baryon- photon plasma starting at end of inflation. When plasma combines to neutral hydrogen, sound propagation ends. Cosmic expansion sets up a predictable standing wave pattern on scales of the Hubble length. The Hubble length (~sound horizon r s) ~140 Mpc is imprinted on the matter density pattern. Identify the angular scale subtending r s then use s =r s /D(z) WMAP/Planck determine r s and the distance to z=1088. Survey of galaxies (as signposts for dark matter) recover D(z), H(z) at 0<z<5. Galaxy survey can be visible/NIR or 21- cm emission BAO seen in CMB (WMAP) BAO seen in SDSS Galaxy correlations (Eisenstein et al)
80
Dark Energy with Galaxy Clusters Galaxy clusters are the largest structures in Universe to undergo gravitational collapse. Markers for locations with density contrast above a critical value. Theory predicts the mass function dN/dMdV. We observe dN/dzd . Dark energy sensitivity: Mass function is very sensitive to M; very sensitive to g(z). Also very sensitive to mis- estimation of mass, which is not directly observed. Optical View (Lupton/SDSS) Cluster method probes both D(z) and g(z)
81
Dark Energy with Galaxy Clusters 30 GHz View (Carlstrom et al) Sunyaev-Zeldovich effect X-ray View (Chandra) Optical View (Lupton/SDSS)
82
Galaxy Clusters from ROSAT X-ray surveys ROSAT cluster surveys yielded ~few 100 clusters in controlled samples. Future X-ray, SZ, lensing surveys project few x 10,000 detections. From Rosati et al, 1999:
83
Gravitational Lensing
87
Dark Energy with Weak Gravitational Lensing Mass concentrations in the Universe deflect photons from distant sources. Displacement of background images is unobservable, but their distortion (shear) is measurable. Extent of distortion depends upon size of mass concentrations and relative distances. Depth information from redshifts. Obtaining 10 8 redshifts from optical spectroscopy is infeasible. “photometric” redshifts instead. Lensing method probes both D(z) and g(z)
88
Dark Energy with Weak Gravitational Lensing In weak lensing, shapes of galaxies are measured. Dominant noise source is the (random) intrinsic shape of galaxies. Large- N statistics extract lensing influence from intrinsic noise.
89
Choose your background photon source: Faint background galaxies: Use visible/NIR imaging to determine shapes. Photometric redshifts. Photons from the CMB: Use mm-wave high- resolution imaging of CMB. All sources at z=1088. 21-cm photons: Use the proposed Square Kilometer Array (SKA). Sources are neutral H in regular galaxies at z 6. (lensing not yet detected) Hoekstra et al 2006:
90
Q: Given that we know so little about the cosmic acceleration, how do we represent source of this acceleration when we forecast the impact of future experiments? One Answer: ( DETF, Joint Dark Energy Mission Science Definition Team JDEM STD ) Model dark energy as homogeneous fluid all information contained in Model possible breakdown of GR by inconsistent determination of w(a) by different methods.
91
Q: Given that we know so little about the cosmic acceleration, how do we represent source of this acceleration when we forecast the impact of future experiments? One Answer: ( DETF, Joint Dark Energy Mission Science Definition Team JDEM STD ) Model dark energy as homogeneous fluid all information contained in Model possible breakdown of GR by inconsistent determination of w(a) by different methods. Also: Std cosmological parameters including curvature
92
Q: Given that we know so little about the cosmic acceleration, how do we represent source of this acceleration when we forecast the impact of future experiments? One Answer: ( DETF, Joint Dark Energy Mission Science Definition Team JDEM STD ) Model dark energy as homogeneous fluid all information contained in Model possible breakdown of GR by inconsistent determination of w(a) by different methods. Also: Std cosmological parameters including curvature We know very little now
93
Some general issues: Properties: Solve GR for the scale factor a of the Universe (a=1 today): Positive acceleration clearly requires (unlike any known constituent of the Universe) or a non-zero cosmological constant or an alteration to General Relativity. Two “familiar” ways to achieve acceleration: 1) Einstein’s cosmological constant and relatives 2) Whatever drove inflation: Dynamical, Scalar field? Recall:
94
ww wawa DETF figure of merit: Area 95% CL contour (DETF parameterization… Linder)
95
The DETF stages (data models constructed for each one) Stage 2: Underway Stage 3: Medium size/term projects Stage 4: Large longer term projects (ie JDEM, LST) DETF modeled SN Weak Lensing Baryon Oscillation Cluster data
96
DETF Projections Stage 3 Figure of merit Improvement over Stage 2
97
DETF Projections Ground Figure of merit Improvement over Stage 2
98
DETF Projections Space Figure of merit Improvement over Stage 2
99
DETF Projections Ground + Space Figure of merit Improvement over Stage 2
100
A technical point: The role of correlations
101
From the DETF Executive Summary One of our main findings is that no single technique can answer the outstanding questions about dark energy: combinations of at least two of these techniques must be used to fully realize the promise of future observations. Already there are proposals for major, long-term (Stage IV) projects incorporating these techniques that have the promise of increasing our figure of merit by a factor of ten beyond the level it will reach with the conclusion of current experiments. What is urgently needed is a commitment to fund a program comprised of a selection of these projects. The selection should be made on the basis of critical evaluations of their costs, benefits, and risks.
102
The Dark Energy Task Force (DETF) Created specific simulated data sets (Stage 2, Stage 3, Stage 4) Assessed their impact on our knowledge of dark energy as modeled with the w0-wa parameters
103
Followup questions: In what ways might the choice of DE parameters biased the DETF results? What impact can these data sets have on specific DE models (vs abstract parameters)? To what extent can these data sets deliver discriminating power between specific DE models? How is the DoE/ESA/NASA Science Working Group looking at these questions? The Dark Energy Task Force (DETF) Created specific simulated data sets (Stage 2, Stage 3, Stage 4) Assessed their impact on our knowledge of dark energy as modeled with the w0-wa parameters
105
The Dark Energy Task Force (DETF) Created specific simulated data sets (Stage 2, Stage 3, Stage 4) Assessed their impact on our knowledge of dark energy as modeled with the w0-wa parameters Followup questions: In what ways might the choice of DE parameters biased the DETF results? What impact can these data sets have on specific DE models (vs abstract parameters)? To what extent can these data sets deliver discriminating power between specific DE models? How is the DoE/ESA/NASA Science Working Group looking at these questions? NB: To make concrete comparisons this work ignores various possible improvements to the DETF data models. (see for example J Newman, H Zhan et al & Schneider et al, H Zhan et al to appear, NIR synergies) ALSO Ground/Space synergies DETF
106
The Dark Energy Task Force (DETF) Created specific simulated data sets (Stage 2, Stage 3, Stage 4) Assessed their impact on our knowledge of dark energy as modeled with the w0-wa parameters Followup questions: In what ways might the choice of DE parameters biased the DETF results? What impact can these data sets have on specific DE models (vs abstract parameters)? To what extent can these data sets deliver discriminating power between specific DE models? How is the DoE/ESA/NASA Science Working Group looking at these questions? NB: To make concrete comparisons this work ignores various possible improvements to the DETF data models. (see for example J Newman, H Zhan et al & Schneider et al, H Zhan et al to appear, NIR synergies i.e Dome A & LSST synergies ) ALSO Ground/Space synergies DETF
107
The Dark Energy Task Force (DETF) Created specific simulated data sets (Stage 2, Stage 3, Stage 4) Assessed their impact on our knowledge of dark energy as modeled with the w0-wa parameters Followup questions: In what ways might the choice of DE parameters biased the DETF results? What impact can these data sets have on specific DE models (vs abstract parameters)? To what extent can these data sets deliver discriminating power between specific DE models? How is the DoE/ESA/NASA Science Working Group looking at these questions?
108
A: DETF Stage 3: Poor DETF Stage 4: Marginal… Excellent within reach (AA) In what ways might the choice of DE parameters have skewed the DETF results? A: Only by an overall (possibly important) rescaling What impact can these data sets have on specific DE models (vs abstract parameters)? A: Very similar to DETF results in w0-wa space Summary To what extent can these data sets deliver discriminating power between specific DE models?
109
w0-wa can only do these DE models can do this (and much more) w z How good is the w(a) ansatz?
110
w0-wa can only do these DE models can do this (and much more) w z How good is the w(a) ansatz? NB: Better than & flat
111
Try N-D stepwise constant w(a) AA & G Bernstein 2006 (astro-ph/0608269 ). More detailed info can be found at http://www.physics.ucdavis.edu/Cosmology/albrecht/MoreInfo0608269/astro-ph/0608269 http://www.physics.ucdavis.edu/Cosmology/albrecht/MoreInfo0608269/ N parameters are coefficients of the “top hat functions”
112
Try N-D stepwise constant w(a) AA & G Bernstein 2006 (astro-ph/0608269 ). More detailed info can be found at http://www.physics.ucdavis.edu/Cosmology/albrecht/MoreInfo0608269/astro-ph/0608269 http://www.physics.ucdavis.edu/Cosmology/albrecht/MoreInfo0608269/ N parameters are coefficients of the “top hat functions” Used by Huterer & Turner; Huterer & Starkman; Knox et al; Crittenden & Pogosian Linder; Reiss et al; Krauss et al de Putter & Linder; Sullivan et al
113
Try N-D stepwise constant w(a) AA & G Bernstein 2006 N parameters are coefficients of the “top hat functions” Allows greater variety of w(a) behavior Allows each experiment to “put its best foot forward” Any signal rejects Λ
114
Try N-D stepwise constant w(a) AA & G Bernstein 2006 N parameters are coefficients of the “top hat functions” Allows greater variety of w(a) behavior Allows each experiment to “put its best foot forward” Any signal rejects Λ “Convergence”
115
115 Illustration of stepwise parameterization of w(a) Each bin height is a free parameter Z=4 Z=0
116
116 Each bin height is a free parameter Refine bins as much as needed Illustration of stepwise parameterization of w(a) Z=4 Z=0
117
117 Each bin height is a free parameter Refine bins as much as needed Z=4 Z=0 Illustration of stepwise parameterization of w(a)
118
118 Each bin height is a free parameter Refine bins as much as needed Illustration of stepwise parameterization of w(a) Z=4 Z=0
119
119 Each bin height is a free parameter Refine bins as much as needed FOMSWG settled on 36 bins Illustration of stepwise parameterization of w(a) Z=4 Z=0
120
2D illustration: Axis 1 Axis 2 Q: How do you describe error ellipsis in N D space? A: In terms of N principle axes and corresponding N errors :
121
Q: How do you describe error ellipsis in N D space? A: In terms of N principle axes and corresponding N errors : 2D illustration: Axis 1 Axis 2 Principle component analysis
122
2D illustration: Axis 1 Axis 2 NB: in general the s form a complete basis: The are independently measured qualities with errors Q: How do you describe error ellipsis in N D space? A: In terms of N principle axes and corresponding N errors :
123
2D illustration: Axis 1 Axis 2 NB: in general the s form a complete basis: The are independently measured qualities with errors Q: How do you describe error ellipsis in N D space? A: In terms of N principle axes and corresponding N errors :
124
Principle Axes Characterizing 9D ellipses by principle axes and corresponding errors DETF stage 2 z-=4z =1.5z =0.25z =0
125
Principle Axes Characterizing 9D ellipses by principle axes and corresponding errors WL Stage 4 Opt z-=4z =1.5z =0.25z =0
126
Principle Axes Characterizing 9D ellipses by principle axes and corresponding errors WL Stage 4 Opt “Convergence” z-=4z =1.5z =0.25z =0
127
DETF(-CL) 9D (-CL)
128
DETF(-CL) 9D (-CL) Stage 2 Stage 4 = 3 orders of magnitude (vs 1 for DETF) Stage 2 Stage 3 = 1 order of magnitude (vs 0.5 for DETF)
129
Upshot of N-D FoM: 1)DETF underestimates impact of expts 2)DETF underestimates relative value of Stage 4 vs Stage 3 3)The above can be understood approximately in terms of a simple rescaling (related to higher dimensional parameter space). 4)DETF FoM is fine for most purposes (ranking, value of combinations etc). Inverts cost/FoM Estimates S3 vs S4
130
A: DETF Stage 3: Poor DETF Stage 4: Marginal… Excellent within reach (AA) In what ways might the choice of DE parameters have skewed the DETF results? A: Only by an overall (possibly important) rescaling What impact can these data sets have on specific DE models (vs abstract parameters)? A: Very similar to DETF results in w0-wa space Summary To what extent can these data sets deliver discriminating power between specific DE models?
131
A: DETF Stage 3: Poor DETF Stage 4: Marginal… Excellent within reach (AA) In what ways might the choice of DE parameters have skewed the DETF results? A: Only by an overall (possibly important) rescaling What impact can these data sets have on specific DE models (vs abstract parameters)? A: Very similar to DETF results in w0-wa space Summary To what extent can these data sets deliver discriminating power between specific DE models?
132
DETF stage 2 DETF stage 3 DETF stage 4 [ Abrahamse, AA, Barnard, Bozek & Yashar PRD 2008]
133
A: DETF Stage 3: Poor DETF Stage 4: Marginal… Excellent within reach (AA) In what ways might the choice of DE parameters have skewed the DETF results? A: Only by an overall (possibly important) rescaling What impact can these data sets have on specific DE models (vs abstract parameters)? A: Very similar to DETF results in w0-wa space Summary To what extent can these data sets deliver discriminating power between specific DE models?
134
A: DETF Stage 3: Poor DETF Stage 4: Marginal… Excellent within reach (AA) In what ways might the choice of DE parameters have skewed the DETF results? A: Only by an overall (possibly important) rescaling What impact can these data sets have on specific DE models (vs abstract parameters)? A: Very similar to DETF results in w0-wa space Summary To what extent can these data sets deliver discriminating power between specific DE models?
135
A: DETF Stage 3: Poor DETF Stage 4: Marginal… Excellent within reach (AA) In what ways might the choice of DE parameters have skewed the DETF results? A: Only by an overall (possibly important) rescaling What impact can these data sets have on specific DE models (vs abstract parameters)? A: Very similar to DETF results in w0-wa space Summary To what extent can these data sets deliver discriminating power between specific DE models?
136
Principle Axes Characterizing 9D ellipses by principle axes and corresponding errors WL Stage 4 Opt z-=4z =1.5z =0.25z =0 Express models & data in space of coefficients of w(a) modes.
137
DETF Stage 4 ground [Opt]
139
The different kinds of curves correspond to different “trajectories” in mode space (similar to FT’s)
140
DETF Stage 4 ground Data that reveals a universe with dark energy given by “ “ will have finite minimum “distances” to other quintessence models powerful discrimination is possible.
141
A: DETF Stage 3: Poor DETF Stage 4: Marginal… Excellent within reach (AA) In what ways might the choice of DE parameters have skewed the DETF results? A: Only by an overall (possibly important) rescaling What impact can these data sets have on specific DE models (vs abstract parameters)? A: Very similar to DETF results in w0-wa space Summary To what extent can these data sets deliver discriminating power between specific DE models?
142
A: DETF Stage 3: Poor DETF Stage 4: Marginal… Excellent within reach (AA) In what ways might the choice of DE parameters have skewed the DETF results? A: Only by an overall (possibly important) rescaling What impact can these data sets have on specific DE models (vs abstract parameters)? A: Very similar to DETF results in w0-wa space Summary To what extent can these data sets deliver discriminating power between specific DE models? Interesting contribution to discussion of Stage 4
143
How is the DoE/ESA/NASA Science Working Group looking at these questions? i)Using w(a) eigenmodes ii)Revealing value of higher modes
144
DoE/ESA/NASA JDEM Science Working Group Update agencies on figures of merit issues formed Summer 08 finished Dec 08 (report on arxiv Jan 09, moved on to SCG) Use w-eigenmodes to get more complete picture also quantify deviations from Einstein gravity
145
How is the DoE/ESA/NASA Science Working Group looking at these questions? i)Using w(a) eigenmodes ii)Revealing value of higher modes
146
146 Principle Axes
147
This talk Part 1: A few attempts to explain dark energy - Motivations, problems and other comments Theme: We may not know where this revolution is taking us, but it is already underway: Part 2 Planning new experiments - DETF - Next questions
148
This talk Part 1: A few attempts to explain dark energy - Motivations, problems and other comments Theme: We may not know where this revolution is taking us, but it is already underway: Part 2 Planning new experiments - DETF - Next questions Deeply exciting physics
149
This talk Part 1: A few attempts to explain dark energy - Motivations, problems and other comments Theme: We may not know where this revolution is taking us, but it is already underway: Part 2 Planning new experiments - DETF - Next questions Rigorous quantitative case for “Stage 4” (i.e. LSST, JDEM, Euclid) Advances in combining techniques Insights into ground & space synergies
150
This talk Part 1: A few attempts to explain dark energy - Motivations, problems and other comments Theme: We may not know where this revolution is taking us, but it is already underway: Part 2 Planning new experiments - DETF - Next questions Rigorous quantitative case for “Stage 4” (i.e. LSST, JDEM, Euclid) Advances in combining techniques Insights into ground & space synergies
151
This talk Part 1: A few attempts to explain dark energy - Motivations, problems and other comments Theme: We may not know where this revolution is taking us, but it is already underway: Part 2 Planning new experiments - DETF - Next questions Rigorous quantitative case for “Stage 4” (i.e. LSST, JDEM, Euclid) Advances in combining techniques Insights into NIR synergies w Photo z-s
152
This talk Part 1: A few attempts to explain dark energy - Motivations, problems and other comments Theme: We may not know where this revolution is taking us, but it is already underway: Part 2 Planning new experiments - DETF - Next questions Rigorous quantitative case for “Stage 4” (i.e. LSST, JDEM, Euclid) Advances in combining techniques Insights into NIR synergies w Photo z-s (i.e Dome A & LSST synergies) Deeply exciting physics
153
END
154
Kowalski, et al., Ap.J.. (2008) [SCP] (Flat universe assumed)
155
Kowalski, et al., Ap.J.. (2008) [SCP] (Flat universe assumed)
156
Additional Slides
157
157 Focus on
158
158 Focus on Cosmic scale factor = “time”
159
159 Focus on Cosmic scale factor = “time” DETF:
160
160 Focus on Cosmic scale factor = “time” DETF: (Free parameters = ∞)
161
161 Focus on Cosmic scale factor = “time” DETF: (Free parameters = ∞) (Free parameters = 2)
162
162 Illustration of FOMSWG parameterization of w(a) Z=4 Z=0
163
163 Illustration of FOMSWG parameterization of w(a) Measure Z=4 Z=0
164
164 Illustration of FOMSWG parameterization of w(a) Each bin height is a free parameter
165
165 Illustration of FOMSWG parameterization of w(a) Each bin height is a free parameter Refine bins as much as needed
166
166 Illustration of FOMSWG parameterization of w(a) Each bin height is a free parameter Refine bins as much as needed Z=4 Z=0
167
167 Illustration of FOMSWG parameterization of w(a) Each bin height is a free parameter Refine bins as much as needed
168
168 Illustration of FOMSWG parameterization of w(a) Each bin height is a free parameter Refine bins as much as needed FOMSWG settled on 36 bins
169
N-D stepwise w(a) AA & G Bernstein 2006 (astro-ph/0608269 ). More detailed info can be found at http://www.physics.ucdavis.edu/Cosmology/albrecht/MoreInfo0608269/astro-ph/0608269 http://www.physics.ucdavis.edu/Cosmology/albrecht/MoreInfo0608269/ N parameters are coefficients of the “top hat functions”
170
AA & G Bernstein 2006 (astro-ph/0608269 ). More detailed info can be found at http://www.physics.ucdavis.edu/Cosmology/albrecht/MoreInfo0608269/astro-ph/0608269 http://www.physics.ucdavis.edu/Cosmology/albrecht/MoreInfo0608269/ N parameters are coefficients of the “top hat functions” Used by Huterer & Turner; Huterer & Starkman; Knox et al; Crittenden & Pogosian Linder; Reiss et al; Krauss et al de Putter & Linder; Sullivan et al N-D stepwise w(a)
171
N parameters are coefficients of the “top hat functions” Allows greater variety of w(a) behavior Allows each experiment to “put its best foot forward” Any signal rejects Λ N-D stepwise w(a)
172
AA & G Bernstein 2006 N parameters are coefficients of the “top hat functions” Allows greater variety of w(a) behavior Allows each experiment to “put its best foot forward” Any signal rejects Λ N-D stepwise w(a) “Convergence”
173
AA & G Bernstein 2006 N parameters are coefficients of the “top hat functions” Allows greater variety of w(a) behavior Allows each experiment to “put its best foot forward” Any signal rejects Λ N-D stepwise w(a) “Convergence”
174
174 DETF FoM Marginalize over all other parameters and find uncertainties in w and w a ww wawa DETF FoM (area of ellipse) CDM value errors in w and w a are correlated
175
From DETF: The figure of merit is a quantitative guide; since the nature of dark energy is poorly understood, no single figure of merit is appropriate for every eventuality. 175 FOMSWG emphasis
176
w0-wa can only do these DE models can do this (and much more) w z How good is the w(a) ansatz?
177
w0-wa can only do these DE models can do this (and much more) w z How good is the w(a) ansatz? NB: Better than & flat
178
Try N-D stepwise constant w(a) AA & G Bernstein 2006 (astro-ph/0608269 ). More detailed info can be found at http://www.physics.ucdavis.edu/Cosmology/albrecht/MoreInfo0608269/astro-ph/0608269 http://www.physics.ucdavis.edu/Cosmology/albrecht/MoreInfo0608269/ N parameters are coefficients of the “top hat functions”
179
Try N-D stepwise constant w(a) AA & G Bernstein 2006 (astro-ph/0608269 ). More detailed info can be found at http://www.physics.ucdavis.edu/Cosmology/albrecht/MoreInfo0608269/astro-ph/0608269 http://www.physics.ucdavis.edu/Cosmology/albrecht/MoreInfo0608269/ N parameters are coefficients of the “top hat functions” Used by Huterer & Turner; Huterer & Starkman; Knox et al; Crittenden & Pogosian Linder; Reiss et al; Krauss et al de Putter & Linder; Sullivan et al
180
Try N-D stepwise constant w(a) AA & G Bernstein 2006 N parameters are coefficients of the “top hat functions” Allows greater variety of w(a) behavior Allows each experiment to “put its best foot forward” Any signal rejects Λ
181
Try N-D stepwise constant w(a) AA & G Bernstein 2006 N parameters are coefficients of the “top hat functions” Allows greater variety of w(a) behavior Allows each experiment to “put its best foot forward” Any signal rejects Λ “Convergence”
182
2D illustration: Axis 1 Axis 2 Q: How do you describe error ellipsis in N D space? A: In terms of N principle axes and corresponding N errors :
183
Q: How do you describe error ellipsis in N D space? A: In terms of N principle axes and corresponding N errors : 2D illustration: Axis 1 Axis 2 Principle component analysis
184
2D illustration: Axis 1 Axis 2 NB: in general the s form a complete basis: The are independently measured qualities with errors Q: How do you describe error ellipsis in N D space? A: In terms of N principle axes and corresponding N errors :
185
2D illustration: Axis 1 Axis 2 NB: in general the s form a complete basis: The are independently measured qualities with errors Q: How do you describe error ellipsis in N D space? A: In terms of N principle axes and corresponding N errors :
186
Principle Axes Characterizing 9D ellipses by principle axes and corresponding errors DETF stage 2 z-=4z =1.5z =0.25z =0
187
Principle Axes Characterizing 9D ellipses by principle axes and corresponding errors WL Stage 4 Opt z-=4z =1.5z =0.25z =0
188
Principle Axes Characterizing 9D ellipses by principle axes and corresponding errors WL Stage 4 Opt “Convergence” z-=4z =1.5z =0.25z =0
189
DETF(-CL) 9D (-CL)
190
DETF(-CL) 9D (-CL) Stage 2 Stage 4 = 3 orders of magnitude (vs 1 for DETF) Stage 2 Stage 3 = 1 order of magnitude (vs 0.5 for DETF)
191
Upshot of N-D FoM: 1)DETF underestimates impact of expts 2)DETF underestimates relative value of Stage 4 vs Stage 3 3)The above can be understood approximately in terms of a simple rescaling (related to higher dimensional parameter space). 4)DETF FoM is fine for most purposes (ranking, value of combinations etc).
192
Upshot of N-D FoM: 1)DETF underestimates impact of expts 2)DETF underestimates relative value of Stage 4 vs Stage 3 3)The above can be understood approximately in terms of a simple rescaling (related to higher dimensional parameter space). 4)DETF FoM is fine for most purposes (ranking, value of combinations etc).
193
Upshot of N-D FoM: 1)DETF underestimates impact of expts 2)DETF underestimates relative value of Stage 4 vs Stage 3 3)The above can be understood approximately in terms of a simple rescaling (related to higher dimensional parameter space). 4)DETF FoM is fine for most purposes (ranking, value of combinations etc).
194
Upshot of N-D FoM: 1)DETF underestimates impact of expts 2)DETF underestimates relative value of Stage 4 vs Stage 3 3)The above can be understood approximately in terms of a simple rescaling (related to higher dimensional parameter space). 4)DETF FoM is fine for most purposes (ranking, value of combinations etc).
195
Upshot of N-D FoM: 1)DETF underestimates impact of expts 2)DETF underestimates relative value of Stage 4 vs Stage 3 3)The above can be understood approximately in terms of a simple rescaling (related to higher dimensional parameter space). 4)DETF FoM is fine for most purposes (ranking, value of combinations etc). Inverts cost/FoM Estimates S3 vs S4
196
Upshot of N-D FoM: 1)DETF underestimates impact of expts 2)DETF underestimates relative value of Stage 4 vs Stage 3 3)The above can be understood approximately in terms of a simple rescaling (related to higher dimensional parameter space). 4)DETF FoM is fine for most purposes (ranking, value of combinations etc). A nice way to gain insights into data (real or imagined)
197
Followup questions: In what ways might the choice of DE parameters have skewed the DETF results? What impact can these data sets have on specific DE models (vs abstract parameters)? To what extent can these data sets deliver discriminating power between specific DE models? How is the DoE/ESA/NASA Science Working Group looking at these questions?
198
A: Only by an overall (possibly important) rescaling Followup questions: In what ways might the choice of DE parameters have skewed the DETF results? What impact can these data sets have on specific DE models (vs abstract parameters)? To what extent can these data sets deliver discriminating power between specific DE models? How is the DoE/ESA/NASA Science Working Group looking at these questions?
199
Followup questions: In what ways might the choice of DE parameters have skewed the DETF results? What impact can these data sets have on specific DE models (vs abstract parameters)? To what extent can these data sets deliver discriminating power between specific DE models? How is the DoE/ESA/NASA Science Working Group looking at these questions?
200
DETF stage 2 DETF stage 3 DETF stage 4 [ Abrahamse, AA, Barnard, Bozek & Yashar PRD 2008]
201
DETF stage 2 DETF stage 3 DETF stage 4 (S2/3) (S2/10) Upshot: Story in scalar field parameter space very similar to DETF story in w0-wa space. [ Abrahamse, AA, Barnard, Bozek & Yashar 2008]
202
Followup questions: In what ways might the choice of DE parameters have skewed the DETF results? What impact can these data sets have on specific DE models (vs abstract parameters)? To what extent can these data sets deliver discriminating power between specific DE models? How is the DoE/ESA/NASA Science Working Group looking at these questions?
203
A: Very similar to DETF results in w0-wa space Followup questions: In what ways might the choice of DE parameters have skewed the DETF results? What impact can these data sets have on specific DE models (vs abstract parameters)? To what extent can these data sets deliver discriminating power between specific DE models? How is the DoE/ESA/NASA Science Working Group looking at these questions?
204
Followup questions: In what ways might the choice of DE parameters have skewed the DETF results? What impact can these data sets have on specific DE models (vs abstract parameters)? To what extent can these data sets deliver discriminating power between specific DE models? How is the DoE/ESA/NASA Science Working Group looking at these questions?
205
Michael Barnard et al arXiv:0804.0413 Followup questions: In what ways might the choice of DE parameters have skewed the DETF results? What impact can these data sets have on specific DE models (vs abstract parameters)? To what extent can these data sets deliver discriminating power between specific DE models? How is the DoE/ESA/NASA Science Working Group looking at these questions?
206
Problem: Each scalar field model is defined in its own parameter space. How should one quantify discriminating power among models? Our answer: Form each set of scalar field model parameter values, map the solution into w(a) eigenmode space, the space of uncorrelated observables. Make the comparison in the space of uncorrelated observables.
207
Principle Axes Characterizing 9D ellipses by principle axes and corresponding errors WL Stage 4 Opt z-=4z =1.5z =0.25z =0 Axis 1 Axis 2
208
●●●● ● ■ ■ ■ ■ ■ ■■■■■ ● Data ■ Theory 1 ■ Theory 2 Concept: Uncorrelated data points (expressed in w(a) space) 0 1 2 0 51015 X Y
209
Starting point: MCMC chains giving distributions for each model at Stage 2.
210
DETF Stage 3 photo [Opt]
212
Distinct model locations mode amplitude/σ i “physical” Modes (and σ i ’s) reflect specific expts.
213
DETF Stage 3 photo [Opt]
215
Eigenmodes: Stage 3 Stage 4 g Stage 4 s z=4z=2z=1z=0.5z=0
216
Eigenmodes: Stage 3 Stage 4 g Stage 4 s z=4z=2z=1z=0.5z=0 N.B. σ i change too
217
DETF Stage 4 ground [Opt]
219
DETF Stage 4 space [Opt]
221
The different kinds of curves correspond to different “trajectories” in mode space (similar to FT’s)
222
DETF Stage 4 ground Data that reveals a universe with dark energy given by “ “ will have finite minimum “distances” to other quintessence models powerful discrimination is possible.
223
Consider discriminating power of each experiment ( look at units on axes)
224
DETF Stage 3 photo [Opt]
226
DETF Stage 4 ground [Opt]
228
DETF Stage 4 space [Opt]
230
Quantify discriminating power:
231
Stage 4 space Test Points Characterize each model distribution by four “test points”
232
Stage 4 space Test Points Characterize each model distribution by four “test points” (Priors: Type 1 optimized for conservative results re discriminating power.)
233
Stage 4 space Test Points
234
Measured the χ 2 from each one of the test points (from the “test model”) to all other chain points (in the “comparison model”). Only the first three modes were used in the calculation. Ordered said χ 2 ‘s by value, which allows us to plot them as a function of what fraction of the points have a given value or lower. Looked for the smallest values for a given model to model comparison.
235
Model Separation in Mode Space Fraction of compared model within given χ 2 of test model’s test point Test point 4 Test point 1 Where the curve meets the axis, the compared model is ruled out by that χ 2 by an observation of the test point. This is the separation seen in the mode plots. 99% confidence at 11.36
236
Model Separation in Mode Space Fraction of compared model within given χ 2 of test model’s test point Test point 4 Test point 1 Where the curve meets the axis, the compared model is ruled out by that χ 2 by an observation of the test point. This is the separation seen in the mode plots. 99% confidence at 11.36 …is this gap This gap…
237
DETF Stage 3 photo Test Point Model Comparison Model [4 models] X [4 models] X [4 test points]
238
DETF Stage 3 photo Test Point Model Comparison Model
239
DETF Stage 4 ground Test Point Model Comparison Model
240
DETF Stage 4 space Test Point Model Comparison Model
241
PNGB ExpITAS Point 10.001 0.10.2 Point 20.0020.010.51.8 Point 30.0040.041.26.2 Point 40.010.041.610.0 Exp Point 10.0040.0010.10.4 Point 20.010.0010.41.8 Point 30.030.0010.74.3 Point 40.10.011.19.1 IT Point 10.20.10.0010.2 Point 20.50.40.00040.7 Point 31.00.70.0013.3 Point 42.71.80.0116.4 AS Point 10.1 0.0001 Point 20.20.1 0.0001 Point 30.2 0.10.0002 Point 40.60.50.20.001 DETF Stage 3 photo A tabulation of χ 2 for each graph where the curve crosses the x-axis (= gap) For the three parameters used here, 95% confidence χ 2 = 7.82, 99% χ 2 = 11.36. Light orange > 95% rejection Dark orange > 99% rejection Blue: Ignore these because PNGB & Exp hopelessly similar, plus self-comparisons
242
PNGB ExpITAS Point 10.0010.0050.30.9 Point 20.0020.042.47.6 Point 30.0040.26.018.8 Point 40.010.28.026.5 Exp Point 10.010.0010.41.6 Point 20.040.0022.17.8 Point 30.010.0033.814.5 Point 40.030.016.024.4 IT Point 11.10.90.0021.2 Point 23.22.60.0013.6 Point 36.75.20.0028.3 Point 418.713.60.0430.1 AS Point 12.41.40.50.001 Point 22.32.10.80.001 Point 33.33.11.20.001 Point 47.47.02.60.001 DETF Stage 4 ground A tabulation of χ 2 for each graph where the curve crosses the x-axis (= gap). For the three parameters used here, 95% confidence χ 2 = 7.82, 99% χ 2 = 11.36. Light orange > 95% rejection Dark orange > 99% rejection Blue: Ignore these because PNGB & Exp hopelessly similar, plus self-comparisons
243
PNGB ExpITAS Point 10.01 0.41.6 Point 20.010.053.213.0 Point 30.020.28.230.0 Point 40.040.210.937.4 Exp Point 10.020.0020.62.8 Point 20.050.0032.913.6 Point 30.10.015.224.5 Point 40.30.028.433.2 IT Point 11.51.30.0052.2 Point 24.63.80.0028.2 Point 39.77.70.0039.4 Point 427.820.80.157.3 AS Point 13.23.01.10.002 Point 24.94.61.80.003 Point 310.910.44.30.01 Point 426.525.110.60.01 DETF Stage 4 space A tabulation of χ 2 for each graph where the curve crosses the x-axis (= gap) For the three parameters used here, 95% confidence χ 2 = 7.82, 99% χ 2 = 11.36. Light orange > 95% rejection Dark orange > 99% rejection Blue: Ignore these because PNGB & Exp hopelessly similar, plus self-comparisons
244
PNGB ExpITAS Point 10.01.093.6 Point 20.010.17.329.1 Point 30.040.418.467.5 Point 40.090.424.184.1 Exp Point 10.040.011.46.4 Point 20.10.016.630.7 Point 30.30.0111.855.1 Point 40.70.0518.874.6 IT Point 13.52.80.014.9 Point 210.48.50.0118.4 Point 321.917.40.0121.1 Point 462.446.90.2129.0 AS Point 17.26.82.50.004 Point 210.910.34.00.01 Point 324.623.39.80.01 Point 459.756.623.90.01 DETF Stage 4 space 2/3 Error/mode Many believe it is realistic for Stage 4 ground and/or space to do this well or even considerably better. (see slide 5) A tabulation of χ 2 for each graph where the curve crosses the x-axis (= gap). For the three parameters used here, 95% confidence χ 2 = 7.82, 99% χ 2 = 11.36. Light orange > 95% rejection Dark orange > 99% rejection
245
Comments on model discrimination Principle component w(a) “modes” offer a space in which straightforward tests of discriminating power can be made. The DETF Stage 4 data is approaching the threshold of resolving the structure that our scalar field models form in the mode space.
246
Comments on model discrimination Principle component w(a) “modes” offer a space in which straightforward tests of discriminating power can be made. The DETF Stage 4 data is approaching the threshold of resolving the structure that our scalar field models form in the mode space.
247
Comments on model discrimination Principle component w(a) “modes” offer a space in which straightforward tests of discriminating power can be made. The DETF Stage 4 data is approaching the threshold of resolving the structure that our scalar field models form in the mode space.
248
Followup questions: In what ways might the choice of DE parameters have skewed the DETF results? What impact can these data sets have on specific DE models (vs abstract parameters)? To what extent can these data sets deliver discriminating power between specific DE models? How is the DoE/ESA/NASA Science Working Group looking at these questions? A: DETF Stage 3: Poor DETF Stage 4: Marginal… Excellent within reach
249
Followup questions: In what ways might the choice of DE parameters have skewed the DETF results? What impact can these data sets have on specific DE models (vs abstract parameters)? To what extent can these data sets deliver discriminating power between specific DE models? How is the DoE/ESA/NASA Science Working Group looking at these questions? A: DETF Stage 3: Poor DETF Stage 4: Marginal… Excellent within reach Structure in mode space
250
Followup questions: In what ways might the choice of DE parameters have skewed the DETF results? What impact can these data sets have on specific DE models (vs abstract parameters)? To what extent can these data sets deliver discriminating power between specific DE models? How is the DoE/ESA/NASA Science Working Group looking at these questions? A: DETF Stage 3: Poor DETF Stage 4: Marginal… Excellent within reach
251
Followup questions: In what ways might the choice of DE parameters have skewed the DETF results? What impact can these data sets have on specific DE models (vs abstract parameters)? To what extent can these data sets deliver discriminating power between specific DE models? How is the DoE/ESA/NASA Science Working Group looking at these questions?
252
DoE/ESA/NASA JDEM Science Working Group Update agencies on figures of merit issues formed Summer 08 finished ~now (moving on to SCG) Use w-eigenmodes to get more complete picture also quantify deviations from Einstein gravity For tomorrow: Something new we learned about (normalizing) modes
253
NB: in general the s form a complete basis: The are independently measured qualities with errors Define which obey continuum normalization: then where
254
Define which obey continuum normalization: then where Q: Why? A: For lower modes, has typical grid independent “height” O(1), so one can more directly relate values of to one’s thinking (priors) on
255
Principle Axes (w(z)) DETF Stage 4
256
Principle Axes (w(z)) DETF Stage 4
257
Upshot: More modes are interesting (“well measured” in a grid invariant sense) than previously thought.
259
An example of the power of the principle component analysis: Q: I’ve heard the claim that the DETF FoM is unfair to BAO, because w0-wa does not describe the high-z behavior to which BAO is particularly sensitive. Why does this not show up in the 9D analysis?
260
DETF(-CL) 9D (-CL) Specific Case:
261
Principle Axes Characterizing 9D ellipses by principle axes and corresponding errors WL Stage 4 Opt z-=4z =1.5z =0.25z =0
262
BAO z-=4z =1.5z =0.25z =0
263
SN z-=4z =1.5z =0.25z =0
264
BAO DETF z-=4z =1.5z =0.25z =0
265
SN DETF z-=4z =1.5z =0.25z =0
266
z-=4z =1.5z =0.25z =0 SN w0-wa analysis shows two parameters measured on average as well as 3.5 of these DETF 9D
267
Stage 2
274
Detail: Model discriminating power
275
DETF Stage 4 ground [Opt] Axes: 1 st and 2 nd best measured w(z) modes
276
DETF Stage 4 ground [Opt] Axes: 3 rd and 4 th best measured w(z) modes
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.