Download presentation
Presentation is loading. Please wait.
1
Spatio – Temporal Cluster Detection Using AMOEBA
Jimmy Kroon Pennsylvania State University Advisor: Dr. Frank Hardisty
2
This is a parody – Original Art: http://projectswordtoys. blogspot
3
Outline Introduction – Clustering and Project Direction
The Spatial Scan Statistic and SatScan AMOEBA Proposed Spatio-Temporal AMOEBA Method Software, Data, and Progress
4
Cluster Detection Cluster: “a geographically and/or temporally bounded group of occurrences of sufficient size and concentration to be unlikely to have occurred by chance” (Knox, 1989) Two Typical Uses Disease Surveillance Week of 2/7/2010 Data: Google Flu Trends – Analysis: GeoDa Epidemiological Studies Brain Cancer in NM Kulldorff et al. 1998 Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
5
Time in Spatial Analysis
Time Matters: Many geographic phenomena are dynamic. Spatial patterns we see probably change over time The American Association of Geographers describes temporal geography as a ‘frontier’ of GIScience. Spatio-temporal clusters may exhibit behaviors not seen in purely spatial clusters. Growth Movement Splits / Joins Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
6
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
Research Problem Primary: No method exists for the determining the true extent of irregularly shaped clusters in spatio-temporal datasets. Secondary: Spatial AMOEBA has not been implemented in R Project Goals A demonstration of spatio-temporal cluster detection based on the AMOEBA procedure. R scripts for running spatial and spatio-temporal AMOEBA will be contributed to the R community. Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
7
The Spatial Scan Statistic
Scan data with a moving ‘window’, calculating local autocorrelation for spatial units that fall within the window. Select the window(s) with the highest calculated autocorrelation value as possible cluster(s). The spatial scan statistic is by far the most popular cluster detection technique, largely due to the availability of SaTScan software by Martin Kulldorff. Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
8
The Spatial Scan Statistic
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
9
Drawbacks of the Spatial Scan Statistic
Clusters that are not similar in shape to the scanning window can produce errors. False inclusions False exclusions Identify thin clusters as multiple small clusters Cannot detect holes in clusters Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
10
The Elliptical Spatial Scan Statistic
Must choose shapes a priori to avoid pre-selection bias See Kulldorff et al. 2006 Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
12
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
Ecotope-Based – Regions of contiguous spatial units that are related in terms of z-value Multidirectional – Search in all directions. Optimum – Procedure takes place at the finest spatial scale possible and is capable of revealing all spatial association present in the dataset (Aldstadt and Getis, 2006). AMOEBA Clusters Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
13
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
Defining an Ecotope Add a seed location (one polygon) to the ecotope Calculate Gi* (Getis-Ord local autocorrelation statistic) Search in all directions for contiguous polygons Those that increase Gi* are added to the growing ecotope for that seed location Keep searching for more neighbors, growing the ecotope until Gi* no longer increases Repeat – creating ecotopes for each polygon in the dataset Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
14
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
The R Neighbor Object Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
15
Finding an Ecotope with AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
16
Finding an Ecotope with AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
17
Finding an Ecotope with AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
18
Finding an Ecotope with AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
19
Finding an Ecotope with AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
20
Finding an Ecotope with AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
21
Finding an Ecotope with AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
22
Finding an Ecotope with AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
23
Finding an Ecotope with AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
24
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
From Ecotopes to Clusters Rank ecotopes by final Gi* Select that with the highest Gi* as a cluster Eliminate intersecting ecotopes Select the ecotope with the next highest Gi* as a second cluster Repeat Probability of clusters can be tested using Monte Carlo simulation Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
25
Incorporating Time into AMOEBA
Remember - Spatio-temporal clusters may exhibit behaviors not seen in purely spatial clusters. Growth Movement Splits / Joins Visualize temporal data as layers of data with time extending vertically through the layers. Each spatio-temporal unit has spatial neighbors and temporal neighbors Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
26
The Spatio-Temporal Scan Statistic
See Kulldorff et al. 1998 Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
27
Spatio-Temporal AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
28
Spatio-Temporal AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
29
Spatio-Temporal AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
30
Spatio-Temporal AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
31
Spatio-Temporal AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
32
Spatio-Temporal AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
33
Spatio-Temporal AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
34
Spatio-Temporal AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
35
Spatio-Temporal AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
36
Spatio-Temporal AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
37
Spatio-Temporal AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
38
Spatio-Temporal AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
39
Spatio-Temporal AMOEBA
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
40
Software Environment and Test Data
The R Project Free, open source statistical software Extendable with user contributed packages Google Flu Trends Estimates flu incidence levels using aggregated data about user searches for certain keywords 90% accurate compared to CDC data State-level data - updated daily SEER (Surveillance Epidemiology and End Results) National Cancer Institute incidence, survival, and mortality data Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
41
AMOEBA ArcToolbox for ArcGIS
Python Scripts by Jared Aldstadt and Yeming Fan (Aldstadt, 2010) Google Flu Trends – Feb 1, 2009 Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
42
Spatio-Temporal AMOEBA in Python: 2009 Flu Epidemic
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
43
Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
Hmmm… Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
44
R Programming Progress
Compete … Geoprocessing tasks Create spatio-temporal neighbor list Delineate ecotopes Sort and eliminate intersecting ecotopes Returns primary cluster PolyID’s that match the Python results To Do … Monte Carlo simulation Process results and add to the output shapefile Test, test, test Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress
45
References Aldstadt, Jared, and Arthur Getis Using AMOEBA to Create a Spatial Weights Matrix and Identify Spatial Clusters. Geographical Analysis 38: Aldstadt, Jared Spatial Analysis Tools (ArcGIS). Spatial Analysis Tools. Bellec, S, D Hémon, J Rudant, A Goubin, and J Clavel Spatial and space–time clustering of childhood acute leukaemia in France from 1990 to 2000: a nationwide study. British Journal of Cancer Duczmal, Luiz, Martin Kulldorff, and Lan Huang Evaluation of Spatial Scan Statistics for Irregularly Shaped Clusters. Journal of Computational and Graphical Statistics 15(2): Knox, G Detection of Clusters. In Methodology of Enquiries into Disease Clustering, ed. P Elliott, London: Small Area Health Statistics Unit. Kulldorff, Martin, Athas, William, Feuer, Eric, Miller, Barry, and Key, Charles Evaluating cluster alarms: A space-time scan statistic and brain cancer in Los Alamos, New Mexico. American Journal of Public Health 88(9): Kulldorff, Martin, Lan Huang, Linda Pickle, and Luiz Duczmal An elliptic spatial scan statistic. Statistics in Medicine 25(22): Kulldorff, Martin Geographic Information Systems (GIS) community health: Some statistical issues. Journal of Public Health Management and Practice 5(2): Original artwork for parody title slide:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.