Download presentation
Presentation is loading. Please wait.
Published byJeffry Freeman Modified over 9 years ago
1
Contaminant Fate and Transport Processes Philip B. Bedient Environmental Science and Engineering Rice University, Houston, TX
2
Fate and Transport Advection and Dispersion – Covered in Days 1, 2 Sorption and Retardation Chemical/Abiotic processes Volatilization Biodegradation
3
Sorption and Retardation Sorption – association of dissolved or gaseous contaminant with a solid material Adsorption – surface process Absorption – internal process Leads to retardation of the contaminant front Desorption – reverse of either sorption process
4
Soil Grain Sorption
5
Linear Sorption Isotherm Sorption linearly related to aqueous concentration. Partition coefficient is K d K d is related to K ow
6
Partitioning to Solid Phase Octanol water partition coeff. Distribution coeff. Fraction in aqueous phase
7
Regression Eqns for Sorption
8
Retarded v. Non-retarded Species Sorption slows rate of advance of front Sorbing fronts will eventually get there Some compounds irreversibly sorb to soil
9
Retardation Factor
10
Retardation of Tracers
11
Abiotic Fate Processes Hydrolysis Oxidation- Reduction Elimination
13
Volatilization Transfer of contaminant from aqueous phase, NAPL, or sorbed phase directly to gas phase Equilibrium partitioning similar to octanol-water partitioning Partitioning equation known as Henry’s Law H c is the relationship between partial pressure and aqueous concentration of component 20% Oxygen (0.2 atm partial pressure) => 8 mg/L D.O.
14
Biodegradation Processes and Modeling Microbial Processes Kinetics Biodegradation Modeling
15
Biotic Transformations Aerobic and anaerobic biodegradation Reduces aqueous concentrations of contaminant Reduction of contaminant mass Most significant process resulting in reduction of contaminant mass in a system
16
Biodegradation Processes Conversion of contaminants to mineralized (e.g. CO 2, H 2 O, and salts) end-products via biological mechanisms Biotransformation refers to a biological process where the end-products are not minerals (e.g., transforming TCE to DCE) Involves the process of extracting energy from organic chemicals via oxidation of the organic chemicals
17
Fundamentals of Biodegradation All organics are biodegradable, BUT biodegradation requires specific conditions There is no Superbug - not Volkswagon Contaminants must be bioavailable Biodegradation rate and extent is controlled by a “limiting factor”
18
Requirements for Microbial Growth
19
Electron Exchange
20
Aerobic v. Anaerobic If oxygen is the terminal electron acceptor, the process is called aerobic biodegradation All other biological degradation processes are classified as anaerobic biodegradation In most cases, bacteria can only use one terminal electron acceptor Facultative aerobes use oxygen, but can switch to nitrate in the absence of oxygen
21
Aerobic Oxidation Cometabolism Anaerobic Denitrification Manganese reduction Iron reduction Sulfate reduction Methanogenesis Bacterial Metabolism
22
Ground Water Flow Plume of Dissolved Fuel Hydrocarbons Residual NAPL Mobile LNAPL Pool Methanogenesis Sulfate Reduction Iron (III) Reduction Dentrification Aerobic Respiration (Source: W,R, N, & W, 1999.)(Adapted from Lovley et al., 1994b.) Electron Acceptor Zone Formation
23
Dependence on Redox Condition
24
Substrates Primary substrate – Cake enough available to be the sole energy source Secondary substrate – Icing provides energy, not available in high enough concentration Cometabolism – Sprinkles fortuitous transformation of a compound by a microbe relying on some other primary substrate
25
Transformation Process
26
Stoichiometry Electron Donor to Electron acceptor ratios Hydrocarbon requirements for electron acceptor are well defined Electron donor requirements for dechlorination are poorly defined Cometabolic processes are not predictable Each Electron Donor/Electron Acceptor pair has a unique stoichiometric ratio
27
Oxygen Utilization of Substrates Benzene: C 6 H 6 + 7.5O 2 ––> 6CO 2 + 3H 2 O Stoichiometric ratio (F) of oxygen to benzene Each mg/L of benzene consumes 3.07 mg/L of O 2
28
Bioavailability AQUEOUS SORBED GASEOUS NON-AQUEOUS Not accessibleAccessible
29
Microbial Growth Region 1: Lag phase microbes are adjusting to the new substrate (food source) Region 2 Exponential growth phase, microbes have acclimated to the conditions Region 3 Stationary phase, limiting substrate or electron acceptor limits the growth rate Region 4 Decay phase, substrate supply has been exhausted
30
Biodegradation Kinetics The rate of biodegradation or biotransformation is generally the focus of environmental studies Microbial growth and substrate consumption rates have often been described using ‘Monod kinetics’ S is the substrate concentration [mg/L] X is the biomass concentration [mg/ L] k is the maximum substrate utilization rate [sec -1 ] K S is the half-saturation coefficient [mg/L]
31
Monod Kinetics First-order region, S << K S, the equation can be approximated by exponential decay (C = C 0 e –kt ) Center region, Monod kinetics must be used Zero-order region, S >> K S, the equation can be approximated by linear decay (C = C 0 – kt)
32
Modeling Biodegradation Three main methods for modeling biodegradation Monod kinetics First-order decay Instantaneous reaction
33
Modeling First-Order Decay C n+1 = C n e –k∆t Generally assumes nothing about limiting substrates or electron acceptors Degradation rate is proportional to the concentration Generally used as a fitting parameter, encompassing a number of uncertain parameters BIOPLUME III can limit first-order decay to the available electron acceptors
34
Modeling Instantaneous Biodegradation Excess Hydrocarbon: H n > O n /F O n+1 = 0 H n+1 = H n - O n /F Excess Oxygen: H n < O n /F O n+1 = O n - H n F H n+1 = 0 All available substrate is biodegraded, limited only by the availability of terminal electron acceptors First used in BIOPLUME II
35
Sequential Electron Acceptor Models Newer models, such as BIOPLUME III, RT3D, and SEAM3D allow a sequential process After O 2 is depleted, begin using NO 3 – Continue down the list in this order O 2 ––> NO 3 – ––> Fe 3+ ––> SO 4 2– ––> CO 2
36
Biodegradation in BIOPLUME II
37
Principle of Superposition
38
Initial Contaminant Plume
39
Model Parameters
40
Biodegrading Plume Original Plume ConcentrationPlume after two years Extraction Only - No Added O 2
41
Plume Concentrations Plume after two years O 2 Injected at 20 mg/L O 2 Injected at 40 mg/L
42
Dehalogenation Dehalogenation refers to the process of stripping halogens (generally Chlorine) from an organic molecule Dehalogenation is generally an anaerobic process, and is often referred to as reductive dechlorination R–Cl + 2e – + H + ––> R–H + Cl – Can occur via dehalorespiration or cometabolism Some rare cases show cometabolic dechlorination in an aerobic environment
43
Dehalogenation of PCE PCE (perchloroethylene or tetrachloroethylene) TCE (trichloroethylene) DCE (cis-, trans-, and 1,1-dichloroethylene VC (vinyl chloride)
44
Biodegradation Models Bioscreen Biochlor BIOPLUME II and III RT3D MT3D MS SEAM 3D
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.