Presentation is loading. Please wait.

Presentation is loading. Please wait.

Evolution of echolocation  Echolocation basics  Evidence for how and when it appeared  Continuing evolution of echolocation.

Similar presentations


Presentation on theme: "Evolution of echolocation  Echolocation basics  Evidence for how and when it appeared  Continuing evolution of echolocation."— Presentation transcript:

1 Evolution of echolocation  Echolocation basics  Evidence for how and when it appeared  Continuing evolution of echolocation

2  Send out a pulse of sound; receive echoes  Orientation  Navigation  Communication  Hunting

3 Sound production  Sound produced by the larynx (laryngeal echolocation)  Emitted either through the nose or through the mouth  Correlate calls with wing flaps to increase pressure in larynx  Lots of neurological modifications  Ultrasonic (to humans): 20 – 100 KHz  Limitations  Can’t pulse and breathe  Sound attenuates in air—have to be pretty close to your target  Don’t want to deafen yourself—up to 120 decibels

4

5

6 Perceptual problems  Detection—what’s there?  Classification—what is it? how big is it? is it edible?  Localization—where is it? how far away is it? is it moving?

7  Detection  Separating prey from background  Classification  Size  Shape  Material  Texture  Localization  Distance—time delay of echo  Horizontal (azimuthal) angle— binaural cues  Vertical angle (elevation)—monaural spectral cues  Motion—Doppler shifts, “glints”

8 Additional perceptual problems  Environmental noise  “Clutter” echoes  Other prey  Stationary objects and non-prey  Ground, vegetation  Other bats’ signals

9  Narrowband  Constant frequency (CF)  Change only a few hundred Hz  Quasi-constant frequency (QCF) or shallow modulation  Change a few kilohertz (kHz  Broadband  Frequency modulation (FM) or steep modulation  Harmonics (multiples of a fundamental frequency)—use more frequencies to scan more broadly

10 Tradeoffs  Narrowband (CF)  detect weak echoes but can’t localize well (bad for time), especially with long pulses  Doppler compensation and frequency shifts allow detection of motion and fluttering (“glints”)  temporal overlap is OK since echoes are frequency-shifted  Broadband (FM)  harder to detect echoes, but better for accurate determination of distance and angles as well as characterization

11 Call structure varies among bats, among habitats, among prey, and within a call sequence Schnitzler et al., TREE 2003 search approach opennarrow edge

12

13 Myotis lucifugus

14 Eptesicus fuscus Saccopteryx bilineataRhinolophus hipposideros (from batcalls.org)

15 Bats are not alone…  Swiftlets ( Aerodramus ) & oilbird ( Steatornis )  In mammals:  Most bats  Toothed whales & dolphins  Some shrews  Some tenrecs

16 How many times? “Besides bats, dolphins also use echolocation. According to evolution, similar animals descended from each other, so if evolution is true, bats descended from dolphins or vice versa.” www.cryingvoice.com (Not quite true)

17 How many times? “Besides bats, dolphins also use echolocation. According to evolution, similar animals descended from each other, so if evolution is true, bats descended from dolphins or vice versa.” Not all echolocation is the same Whales, bats, shrews, and tenrecs are distant relatives (four different orders) Echolocation (of some sort) has evolved independently at least four times in mammals. Laryngeal echolocation in bats is much more sophisticated.

18  Microbats echolocate  One genus ( Rousettus ) of megabats echolocates

19 …but (again) not all echolocation is the same Rousettus uses tongue-clicks (similar to birds) This is (probably) different in evolutionary terms than sophisticated laryngeal echolocation no tragus no noseleaf

20 Traditional (morphological) view of bat phylogeny: Monophyletic Microchiroptera Monophyletic Megachiroptera

21

22 1 change total

23 Teeling et al. 2005

24 Monophyletic Megachiroptera Paraphyletic Microchiroptera!

25

26

27 2 changes total

28

29

30

31

32

33 Fossil information?  Bats don’t fossilize well (alas!)  A few spectacularly-preserved specimens

34 Icaronycteris index (Green River, Wyoming, 50 Mya)

35 Palaeochiropteryx (Messel formation, Germany, 45 Mya)

36 Hassianycteris (Messel formation)

37 Hassianycteris --radiograph

38 Did the fossils echolocate?  Moderately expanded cochlea  Stylohyal (of hyoid) expanded cranially at the tip  Large orbicular process on the malleus These characters are associated with echolocation in extant bats  Electron microscopy shows pollen on wingscales of eaten moths Yes, the Eocene bats already used echolocation!

39 Teeling et al 2005 & Springer et al 2001

40

41 4 changes Teeling et al 2005 & Springer et al 2001

42 2 changes! Teeling et al 2005 & Springer et al 2001

43 How many times?  With this phylogeny, laryngeal echolocation probably evolved once and was lost once in bats  But there are other possible trees

44  Eocene bats flew AND echolocated!  Three hypotheses:  Flight first—echolocation may have started off as orientation/navigation  Echolocation first—flight later to reduce competition with other terrestrial small mammals  Tandem evolution—two major innovations evolved together  No transitional forms (“missing links”) between ancestors and bats  Fossils with wings but no echolocation?  Fossils that echolocated but couldn’t fly?

45

46

47

48

49 “Forelimb anatomy indicates that the new bat was capable of powered flight like other Eocene bats, but ear morphology suggests that it lacked their echolocation abilities, supporting a 'flight first' hypothesis for chiropteran evolution. The shape of the wings suggests that an undulating gliding– fluttering flight style may be primitive for bats, and the presence of a long calcar indicates that a broad tail membrane evolved early in Chiroptera, probably functioning as an additional airfoil rather than as a prey-capture device. Limb proportions and retention of claws on all digits indicate that the new bat may have been an agile climber that employed quadrupedal locomotion and under-branch hanging behaviour.”

50 Eocene — echolocating bat fossils Paleocene — diversification of flowering plants diversification of insects (now)

51 “Arms race” between bats and insects  About 70% of bat species are insectivorous  butterflies  moths  ants  termites  mantids  midges  mayflies  beetles  caddis flies  alder flies  water striders  dragonflies  crickets  katydids  stinkbugs  etc…

52 Insect defenses  Ears (tympani)  19 separate times—on legs, abdomens, thoraces, wings, facial palps…  “Tune” ears to local bat predators (e.g. noctuid Ascalapha odorata ) in Hawaii  “Jamming” ultrasound?  “Stealth” scales  Unpalatable and obvious (aposematic signaling)  Tiger moths  Flight behavior—fly close to ground, dive, steer away  Sit still and look like background  Predator swamping  Midges, other swarmers  …many many more that we don’t know about—morphological, physiological, behavioral…

53 Bat responses  “lowball” or “highball” frequency to be inaudible to prey  lower volume—whispering bats  use prey cues with (or instead of) echolocation  exploit insect behavior  eating an insect that is avoiding another bat doubles success rate  sneak up via vegetation, or sit still  eat something that can’t hear you—birds, frogs  vary strategy depending on particular prey  trick prey by changing pulse as you get closer to make yourself sound farther away  develop ways to overcome stealth scales and jamming ultrasound

54 Coevolution and echolocation  “Arms race” between bats and insects In days of old and insects bold (Before bats were invented), No sonar cries disturbed the skies— Moths flew uninstrumented. The Eocene brought mammals mean And bats began to sing; Their food they found by ultrasound And chased it on the wing. Now deafness was unsafe because The loud high-pitched vibration Came in advance and gave a chance To beat echolocation. Some found a place on wings of lace To make an ear in haste; Some thought it best upon the chest And some below the waist. Then Roeder’s keys upon the breeze Made Sphingids show their paces. He found the ear by which they hear In palps upon their faces. Of all unlikely places! --J. David Pye (1968)

55 Evolution by echolocation  “Harmonic-hopping” frequency changes driving divergence (Kingston & Rossiter 2004, Nature )  Harmonics affect bat’s perception of distribution of prey (size, type, etc)


Download ppt "Evolution of echolocation  Echolocation basics  Evidence for how and when it appeared  Continuing evolution of echolocation."

Similar presentations


Ads by Google