Download presentation
Presentation is loading. Please wait.
Published byLauren McCoy Modified over 9 years ago
1
Adaptive Grid Reverse-Time Migration Yue Wang
2
Outline Motivation and ObjectiveMotivation and Objective Reverse Time MethodologyReverse Time Methodology Salt Dome Model TestSalt Dome Model Test Field Data TestField Data Test ConclusionsConclusions
3
Problem Kirchhoff migration is not optimal for complex velocity model.Kirchhoff migration is not optimal for complex velocity model.
4
Marmousi Model Distance (km) Depth (km) 3 0 09 Low-velocity wedge
5
Problem Using first arrival time Difficulty in imaging Kirchhoff migration
6
Problem Reverse-Time Migration RTM) Image complex structure Expensive Using multi-arrival time
7
Solution Fast RTM Variable grid size Variable time step
8
Objective Develop fast reverse time migration for land and marine multi-component dataDevelop fast reverse time migration for land and marine multi-component data
9
Outline Motivation and ObjectiveMotivation and Objective Reverse Time MethodologyReverse Time Methodology Salt Dome Model TestSalt Dome Model Test Field Data TestField Data Test ConclusionsConclusions
10
Reverse Time Operator Elastic wave equation A 2-4 staggered-grid FD solver
11
Variable Grid Size Distance Depth Low velocity High velocity
12
Variable Grid Size Fine grid (dx dz) Coarse grid (3dx 3dz) z
13
Variable Grid Size Use wave equation to propagate waves Fine grid Coarse grid
14
Variable Time Step coarse grid, fine time step coarse grid, coarse time step Distance Depth
15
Variable Time Step z dt t dt 3 dt dt
16
Variable Time Step z Fine time step Coarse time step t Use wave equation to propagate waves
17
Variable Time Step Falk et al. (1998, Geophys. Pros. ): 1. Non-staggered-grid FD 1. Non-staggered-grid FD 2. 2x time step change 2. 2x time step change
18
Variable Time Step The new method : 1. Staggered-grid FD 1. Staggered-grid FD 2. 3x time step change 2. 3x time step change
19
Numerical Results Fine time step Time t1 Amplitude Coarse time step Depth Depth Time t2 Amplitude No artificial reflections
20
Outline Motivation and ObjectiveMotivation and Objective Reverse Time MethodologyReverse Time Methodology Salt Dome Model TestSalt Dome Model Test Field Data TestField Data Test ConclusionsConclusions
21
Salt Model Distance (km) Depth (km) 2.7 0 04.5
22
Velocity Profile Velocity (km/s) Depth (km) Velocity (km/s) 1.5402 2.7 0 Depth (km) 2.7 0 PS
23
Velocity Profile Velocity (km/s) Depth (km) Velocity (km/s) 1.5402 2.7 0 PS Fine grid size Fine time step Coarse grid size Coarse time step
24
Shot Gather Normal Stress VerticalHorizontal Time (s) Distance (km) 2 0 0.93.6 0.93.6 0.93.6
25
Kirchhoff Migration Distance (km) Depth (km) 2.5 0 0.454.05
26
Kirchhoff Migration Distance (km) Depth (km) 2.5 0 0.454.05
27
Reverse Time Migration Distance (km) Depth (km) 2.5 0 0.454.05
28
Distance (km) Depth (km) 2.5 0 0.454.05 Reverse Time Migration
29
Outline Motivation and ObjectiveMotivation and Objective Reverse Time MethodologyReverse Time Methodology Salt Dome Model TestSalt Dome Model Test Field Data TestField Data Test ConclusionsConclusions
30
Processed CSG 2.7 0 Radial Component Vertical Component Time (s) Trace Number 080080
31
Common Offset Gather ( Vertical Component) Distance (km) Depth (km) 4 0 027 Signal/Noise Ratio High
32
Common Offset Gather ( Radial Component) Distance (km) Depth (km) 4 0 027 Signal/Noise Ratio Low
33
Kirchhoff Migration ( Vertical Component) Distance (km) Depth (km) 4 0 027
34
Kirchhoff Migration ( Radial Component) Distance (km) Depth (km) 4 0 027
35
RTM Distance (km) Depth (km) 4 0 027
36
Comparison Distance (km) Depth (km) 4 0 027 Distance (km) 027 RTMKM
37
Outline Motivation and ObjectiveMotivation and Objective Reverse Time MethodologyReverse Time Methodology Salt Dome Model TestSalt Dome Model Test Field Data TestField Data Test Conclusions and Future WorkConclusions and Future Work
38
Conclusions Variable RTM 10 times faster than standard RTMVariable RTM 10 times faster than standard RTM Migrates Land and marine multi-component dataMigrates Land and marine multi-component data Use primary and multiple reflections for imagingUse primary and multiple reflections for imaging
39
Acknowledgement We are grateful to the 1999 sponsors of the UTAM consortium for the financial support
40
Raw CSG Time (s) 2.7 0 Radial Component Vertical Component 080080 Trace Number
41
Main Processing Flow Geometry assignment, datuming and so on Trace editing Surface wave attenuation, amplitude balancing P-velocity analysis S-velocity analysis Relative gain compensation, surface velocity estimation KM RTM
42
Shallow Velocity Distance (km) Depth (km) 0.4 0 027
43
Future Work Apply the RTM scheme for data set with more complex structures.Apply the RTM scheme for data set with more complex structures.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.