Download presentation
Presentation is loading. Please wait.
Published byLeo Wade Modified over 9 years ago
1
Universal matter-wave interferometry from microscopic to macroscopic
…in the time-domain Philipp Haslinger
2
Douglas Hofstadter
3
Matter-waves timeline
2013 m > amu 810 atoms 1999 Fullerenes C60 & C70 1995 BEC 90‘s I2, He2, Na2 1927 Davison & Gerner 1936 Neutrons 1930 He atoms & H2 1927 Electrons 1923 De Broglie hypothesis
4
Overview Motivation Talbot-Lau interferometry
Talbot-Lau in the time domain (OTIMA) Experimental protocol Interference of molecular clusters … Limits and outlook Far-off-resonant Bragg interferometer
5
Motivation Collapse models Bassi et al. Rev. Mod.Phys. 85, 471 (2013)
Probing quantum theory on large and complex systems Study of novel decoherence effects Collapse models Bassi et al. Rev. Mod.Phys. 85, 471 (2013) 5th force models Realization of a novel matter-wave interferometer scheme Quantum enhanced metrology of nanoparticles Relative momentum sensitivity < single photon recoil
6
The Talbot Lau interferometer
G1 G2 G3 intensity g v Δx Δx 810 Atoms and amu Fluorinated porphyrin incoherent matter waves preparation of transversal coherence detection by shift of G3 diffraction
7
The Talbot Lau interferometer
G1 G2 G3 intensity g v Δx Δx
8
The Talbot Lau interferometer
G1 G2 G3 intensity g v Δx Δx
9
A model interferometer
s g d
10
The Talbot Lau interferometer
G1 G2 G3 intensity g v Δx Δx Was aber wenn wir in diesem Molekülstrahl auch Teilchen haben mit der halben Masse oder der halben Geschwindigkeit. Es beugt doppelt so weit auf! Und überlagert sich mit den Nachbarinterferenzmustern zu einer Periode von g konstruktiv.
11
A model interferometer
g = s max g 𝑳 𝑻 = d Time - domain
12
A model interferometer
Interference pattern of faster particles After the same time all particles with the same mass produce the same interference, regardless of their velocities! g d Time - domain
13
A model interferometer
Interference pattern of slower particles g d Time - domain
14
A model interferometer
After the same time all particles with the same mass produce the same interference, regardless of their velocities! Time - domain
15
Transition to time-domain
After a certain time .... all particles with the same mass .... contribute to the same interference pattern .... regardless of their velocity -pulsed standing laser waves as periodic ionizing gratings g How to implement? Cahn et al., PRL 79 (1997) Nimmrichter et al., NJP 13 (2011)
16
3 x 157 nm, 𝜏 = 8 ns F2 excimer laser
OTIMA interferometer pulsed source interferometer mirror TOF MS to MCP mass signal We start with a pulsed source. Thermal evaporated neutral particles are releast in punches from hight preasure (seeded with an inert gas like argon) to vacuum. During this expansion they cool down and start to form clusters of diferent masses. tsource t=0 t=TT t=2TT tdetection Pulsed cluster source 3 x 157 nm, 𝜏 = 8 ns F2 excimer laser 157 nm post ionization
17
3 x 157 nm, 𝜏 = 8 ns F2 excimer laser
OTIMA interferometer pulsed source interferometer mirror TOF MS to MCP mass signal tsource t=0 t=TT t=2TT tdetection Pulsed cluster source 3 x 157 nm, 𝜏 = 8 ns F2 excimer laser 157 nm post ionization
18
Quantum interference is revealed as a Mass-dependent signal amplification/reduction
Symmetric pulses⟶ Interference m T1 T2 Asymmetric pulses Sind keine daten, sagen damit wir effect sehen. Mit naked eye not observable
19
The machine
20
Interference pattern encoded in the mass spectrum
Anthracene C14H10 m = 178 amu neon seedgas, vmax ≈920m/s ⟶ TT =19 µs argon seedgas, vmax ≈700m/s ⟶ TT =26 µs difference due to constructive interference Δ𝑆𝑁≡ 𝑆𝑦𝑚 −𝐴𝑠𝑦𝑚 𝐴𝑠𝑦𝑚 Bei den 7 fach vergrößert sollte man eine zoom animieren sonst kennt sich keiner aus Vielleicht auch noch was mit ferrocene oder vanilin Masse mehr also 2100amu Haslinger et al. Nature Physics (2013)
21
Interference pattern encoded in the mass spectrum
Anthracene C14H10 m = 178 amu Bei den 7 fach vergrößert sollte man eine zoom animieren sonst kennt sich keiner aus Vielleicht auch noch was mit ferrocene oder vanilin Haslinger et al. Nature Physics (2013)
22
ferrocene Fe(C5H5)2 1973 caffeine C8H10N4O2 vanillin C8H8O3
Clusters of the following molecules have interfered in the OTIMA interferometer recently: ferrocene Fe(C5H5)2 m = 186 amu 1973 caffeine C8H10N4O2 m = 194 amu vanillin C8H8O3 m = 152 amu Ernst Otto Fischer und Geoffrey Wilkinson erhielten 1973 den Nobelpreis! But especially for vanillin we were really suprised that we see interference pattern. The IE of Vanillin is 8.3 eV. So at least 2 Photons are needed for ionisation. So we decided to have a closer look on our optical gratings.
23
S. Nimmrichter et al. Concept of a time-domain ionizing matter-wave interferometer New J. Phys. 13, (2011) P. Haslinger et al. A universal matter-wave interferometer with optical ionization gratings in the time domain Nature Physics, 9, 144–148 (2013) N. Dörre et al. Photofragmentation beam splitters for matter-wave interferometry Phys. Rev. Lett. 113, (2014) A refined model for Talbot Lau matter-wave optics with pulsed photo-depletion gratings JOSA B 32, 114–120 (2015)
24
Limits & Outlook: -absence of dispersive Grating/wall interaction
high interference contrast expected for masses even beyond 106 amu mass Talbot time required velocity required vacuua gravitational deflection 106 amu 15 ms 1.3 m/s 10-9 mbar 4.5 mm 107 amu 150 ms 13 cm/s 10-11 mbar 45 cm 108 amu 1.5 s 1.3 cm/s 10-12 mbar 45 m mass Talbot time required velocity required vacuua gravitational deflection 106 amu 15 ms 1.3 m/s 10-9 mbar 107 amu 150 ms 13 cm/s 10-11 mbar 108 amu 1.5 s 1.3 cm/s 10-12 mbar mass Talbot time required velocity required vacuua gravitational deflection 106 amu 15 ms 1.3 m/s 107 amu 150 ms 13 cm/s 108 amu 1.5 s 1.3 cm/s mass Talbot time required velocity required vacuua gravitational deflection 106 amu 15 ms 107 amu 150 ms 108 amu 1.5 s mass Talbot time required velocity required vacuua gravitational deflection 106 amu 107 amu 108 amu cooling and/or trapping necessary managable
25
THE OTIMA TEAM special thanks to Markus Arndt Jonas Rodewald
Nadine Dörre Philipp Geyer Stefan Nimmrichter (Theory)
26
Universal matter-wave interferometry from microscopic to macroscopic
…in the time-domain
27
Antihydrogen interferometer
V(z) z Interferometer Standing wave Pions g Mirror coils Bias field Mirror Octupole windings 60 cm Interferometer cell Trap P. Hamilton, A. Zhmoginov, F. Robicheaux, J. Fajans, J. Wurtele, H. Müller PRL 112, , 2014
28
Antihydrogen interferometer
Goals and features Test g for H, anti-H Initially 10-3, eventually 10-6 Design Efficient use of ~300 atoms / month Laser cooling (Donin, Fujiwara, Robicheaux J. Phys. B 46, ) Adiabatic cooling No Lyman-α laser for interferometry (but for laser cooling) Far off-resonant Bragg transitions, couples to dc polarizability Almost any atom Advantages Commercial lasers Based on ALPHA and atom interferometers, both work P. Hamilton, A. Zhmoginov, F. Robicheaux, J. Fajans, J. Wurtele, H. Müller PRL 112, , 2014
29
Thank you for your attention!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.