Download presentation
Presentation is loading. Please wait.
Published byPoppy Bryan Modified over 9 years ago
1
APR01 APS Recent results from Belle: Reflections on Beauty Kay Kinoshita University of Cincinnati Belle Collaboration
2
2K. Kinoshita APR01 APS Outline CP asymmetry in Standard ModelCP asymmetry in Standard Model B decays and CPB decays and CP Asymmetric e + e - collisions at (4S)Asymmetric e + e - collisions at (4S) KEKB and Belle:KEKB and Belle: time-dependent measurement time-dependent measurement Measurement of sin2 1Measurement of sin2 1 SummarySummary
3
3K. Kinoshita APR01 APS Belle Collaboration 274 authors, 45 institutions many nations many nations
4
4K. Kinoshita APR01 APS CP Asymmetry in Standard Model Weak interaction of quarks (u,c,t), (d,s,b) {mass weak} eigenstates CKM - 3x3, unitary by definition -> 4 free parameters 1 2 /2 3 A( i ) 1 2 /2 2 A 3 A(1 i ) 2 A 1 V td V tb *+V cd V cb *+V ud V ub *=0 “unitarity triangle” irreducibly complex -> CP violation
5
5K. Kinoshita APR01 APS CP phenomenology before 1998: seen only in K system predicted for b-hadrons in Standard Model, e.g.: B 0 ->ππ B 0 -> π B 0 ->J/ K s B 0 ->D ( * ) D ( * ) B 0 -> D*π B 0 ->D* first result
6
6K. Kinoshita APR01 APS CP Asymmetry of B -> J/ K s Decays to CP eigenstate: paths w/wo mixing interfere CP-dependent oscillation in decay time distributions No theoretical uncertainty {cc}+{K s,K L,π 0 } CP = ±1
7
7K. Kinoshita APR01 APS Time measurement at (4S) e-e-e-e- e+e+e+e+ B2B2B2B2 t=0 z≈ t c B1B1B1B1 ~200 µm J/ KsKsKsKs flavor tag: e, µ, K ±,... (4S): CP=-1, conserved + e - -> (4S) identify b/b {flavor tag} until first B decay (t=0) Reconstruct CP=±1 mode @ t= t “CP side”
8
8K. Kinoshita APR01 APS Experimental considerations multiply by for lab length (decay in flight) } Kaonsleptons B 0 lifetime = 1.548±0.032 ps, c =464±10 µ m mixing m = 0.47±0.02 ps – 1 ; cT~4.0 mm need to distinguish B 0 vs B 0 (flavor tag), high efficiency True CP asymmetry is diluted: background to CP reconstruction incorrect flavor tag rate vertex resolution Bottom line: need >few x 10 fb –1 @ (4S) {>10 7 B events}, vertexing@<40µm, hadron ID, lepton ID
9
9K. Kinoshita APR01 APS Beams: KEKB E* beam ) = 2.6 MeV IP size = 77µm(x) x 2.0µm(y) x 4.0mm(z) L max = 3.4 X 10 33 cm –2 s –1 (design: 1x10 34 ) Data (6/1999–12/2000) L dt = 10.5 fb –1 @ (4S), 0.6 fb –1 off e – 8.0 GeV e + 3.5 GeV 22 mr = 0.425
10
10K. Kinoshita APR01 APS Belle detector Charged tracking/vertexing - SVD: 3-layer DSSD Si µstrip – CDC: 50 layers (He-ethane) Hadron identification – CDC: dE/dx – TOF: time-of-flight – ACC: Threshold Cerenkov (aerogel) Electron/photon – ECL: CsI calorimeter Muon/KL – KLM: Resistive plate counter/iron
11
11K. Kinoshita APR01 APS B 0 J/ K s ( + ) as an example 1lepton+1”not-hadron” K s + ~4MeV/c 2 K s mass 4 J/ l + l ) CP mode reconstruction
12
12K. Kinoshita APR01 APS CP mode (continued) ~3MeV/c 2 ~10MeV Kinematics for final selection: E E* cand –E* beam 0 (E* beam s 0.5 /2) 10-50 MeV res, depends on mode M bc (Beam-constrained mass) M bc (E* beam 2 -p* cand 2 ) 0.5 Signal region
13
13K. Kinoshita APR01 APS J/ K L J/ : {tight mass cut} 1.42<p *<2.00 GeV/c K L : {KLM/ECL cluster w/o track, >1 KLM superlayers (resolution~ 3° (1.5° if ECL) } within 45˚ of expected lab direction Require cand to have B mass, calculate momentum in CMS (p B *) (~0.3 GeV for signal) backgrounds: random (from data), “feeddown,” known modes - estimate via MC
14
14K. Kinoshita APR01 APS CP candidates J/ K L Fully reconstructed modes
15
15K. Kinoshita APR01 APS CP candidates - numbers
16
16K. Kinoshita APR01 APS Flavor tagging bcs l-l-l-l- l+l+l+l+ K–K–K–K– D0D0 π+π+ D *+ – high-p lepton (p*>1.1 GeV): b-> l - – net K charge b->K – – medium-p lepton, b->c-> l + – soft π b->c{D *+ ->D 0 π + } * all into multidimensional likelihood Significance of CP asymmetry depends on – tagging efficiency – wrong-tag fraction w (measured w data) - effective efficiency = (1-2w)
17
17K. Kinoshita APR01 APS K-K- K-K- z: vertex reconstruction Constrained to measured IP in r- B CP : z ~88 µm (rms) use only tracks from J/ B tag : z ~164 µm (rms) remaining tracks, excluding K s ; iterate, excluding tracks w. poor 2 /n resolution includes physics (e.g. charm) Overall eff. = 87%
18
18K. Kinoshita APR01 APS Prepare to fit: Wrong tag fraction Same fit method, but CP->flavor-specific B D *- l +, D (*)- π +, D *- + +flavor tag separate same-, opp-flavor events fit to z: mixing asymmetry, w: "effective tagging efficiency" eff = (1-2w l ) 2 tag, l =(27.0±2.2)% 99.4% of candidates tagged (good agreement w MC) Bins of dilution parameter (MC)
19
19K. Kinoshita APR01 APS t resolution function Double Gaussian, parameters calculated event- by-event, includes effects of - detector resolution - poorly measured tracks - bias from e.g. charm - approximation of t= z/ c form, params determined by - Monte Carlo - fits for D 0 K - π +, B D * l lifetimes tail fraction: 1.8%
20
20K. Kinoshita APR01 APS Verifying t resolution t used in other measurements, serve as checks B 0 mixing w. dileptons m d =0.463±0.008±0.016 ps -1 (5.9 fb –1 ) PRL86,3228 (PDG2000: 0.472±0.017 ps -1 ) B lifetimes Reconstructed B + flavor tag vertex B DX semileptonic+hadronic modes. 0 =1.56±0.04 ps (PDG2000: 1.548±0.032 ps) + =1.66±0.04 ps (PDG2000: 1.653±0.028 ps)
21
21K. Kinoshita APR01 APS t resolution B 0 mixing w. dileptons Same sign - 2 primaries, mixed event - Primary+2ndary, unmixed & B + B - - Backgrounds Opposite sign - 2 primaries, unmixed & B + B - - Primary+2ndary, mixed& unmixed - Backgrounds Asymmetry in signal (2 primaries) N opp -N same N opp +N same bcs l-l-l-l- l+l+l+l+
22
22K. Kinoshita APR01 APS Fitting t distribution distribution in t~ z/ c unbinned max. likelihood fit, includes - signal root distribution (analytic) - wrong tag fraction (const) - background: right & wrong tag (MC, parametrized) - detector & tagging resolution (parametrized,evt-by-evt)
23
23K. Kinoshita APR01 APS Results binned in t All modes combined : sin2 1 =0.58 +0.32 -0.34
24
24K. Kinoshita APR01 APS Results Fit (stat. err.) Mode CP = -1 CP = +1 Non-CP All CP likelihood Uncombined results are consistent
25
25K. Kinoshita APR01 APS Flavor tagging–0.07+0.05 Physics parameters–0.04+0.03 Background Fraction except K L –0.02+0.03 Background Fraction for K L –0.05+0.05 Background Shape–0.01+0.01 Resolution Function–0.01+0.01 IP measurement–0.01+0.02 Total–0.10+0.09 Systematic errors
26
26K. Kinoshita APR01 APS Result in context sin2 1 =0.58 +0.32+0.09 -0.34-0.10 Feldman-Cousins confidence interval Probability of observing sin2 1 >0.58 if CP is conserved: 4.9% CKM, from rates {PRL 86, 2509 (2001)}
27
27K. Kinoshita APR01 APS Summary/Prospects Successful run of Belle in 2000 Results on sin 2 1 : 10.5 fb – 1 on (4S), 282 tagged events sin 2 1 : 10.5 fb – 1 on (4S), 282 tagged events + 17 papers at Osaka ICHEP 2000 + 17 papers at Osaka ICHEP 2000 2 publications, 4 submitted, more soon 2 publications, 4 submitted, more soon Next some improvements to analysis data as of 4/01 - 20.5 fb – 1 ; anticipate 30 fb – 1 by summer Luminosity: peak 3.41x10 33 cm – 2 s – 1 ; 24 hrs 198 pb – 1 ; month 4047 pb – 1 KEKB continuing to improve performance
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.