Download presentation
Presentation is loading. Please wait.
1
Chemistry 4.2
2
Structure of the Nuclear Atom
4.2 Cathode-ray tubes are found in TVs, computer monitors, and many other devices with electronic displays.
3
Subatomic Particles What are three kinds of subatomic particles? 4.2
4
4.2 Subatomic Particles Three kinds of subatomic particles are electrons, protons, and neutrons.
5
4.2 Subatomic Particles Electrons In 1897, the English physicist J. J. Thomson (1856–1940) discovered the electron. Electrons are negatively charged subatomic particles.
6
4.2 Subatomic Particles Thomson performed experiments that involved passing electric current through gases at low pressure. The result was a glowing beam, or cathode ray, that traveled from the cathode to the anode.
7
Cathode Ray Tube 4.2 Subatomic Particles
In a cathode-ray tube, electrons travel as a ray from the cathode (-) to the anode (+). A television tube is a specialized type of cathode-ray tube.
8
A cathode ray is deflected by a magnet.
4.2 Subatomic Particles A cathode ray is deflected by a magnet. Thomson examined two ways that a cathode ray can be deflected: a) by using a magnet, and b) by using electrically charged plates. Inferring If a cathode ray is attracted to a positively charged plate, what can you infer about the charge of the particles that make up the cathode ray?
9
A cathode ray is deflected by electrically charged plates.
4.2 Subatomic Particles A cathode ray is deflected by electrically charged plates. In a cathode-ray tube, electrons travel as a ray from the cathode (-) to the anode (+). A television tube is a specialized type of cathode-ray tube.
10
4.2 Subatomic Particles Thomson concluded that a cathode ray is a stream of electrons. Electrons are parts of the atoms of all elements.
11
Such positively charged subatomic particles are called protons.
4.2 Subatomic Particles Protons and Neutrons In 1886, Eugen Goldstein (1850–1930) observed a cathode-ray tube and found rays traveling in the direction opposite to that of the cathode rays. He concluded that they were composed of positive particles. Such positively charged subatomic particles are called protons.
12
4.2 Subatomic Particles In 1932, the English physicist James Chadwick (1891–1974) confirmed the existence of yet another subatomic particle: the neutron. Neutrons are subatomic particles with no charge but with a mass nearly equal to that of a proton.
13
4.2 Subatomic Particles Table 4.1 summarizes the properties of electrons, protons, and neutrons.
14
4.2 The Atomic Nucleus The Atomic Nucleus How can you describe the structure of the nuclear atom?
15
4.2 The Atomic Nucleus J.J. Thompson and others supposed the atom was filled with positively charged material and the electrons were evenly distributed throughout. This model of the atom turned out to be short- lived, however, due to the work of Ernest Rutherford (1871–1937).
16
Ernest Rutherford’s Portrait
4.2 The Atomic Nucleus Ernest Rutherford’s Portrait Born in New Zealand, Ernest Rutherford was awarded the Nobel Prize for Chemistry in His portrait appears on the New Zealand $100 bill.
17
Rutherford’s Gold-Foil Experiment
4.2 The Atomic Nucleus Rutherford’s Gold-Foil Experiment In 1911, Rutherford and his coworkers at the University of Manchester, England, directed a narrow beam of alpha particles at a very thin sheet of gold foil.
18
Rutherford’s Gold-Foil Experiment
4.2 The Atomic Nucleus Rutherford’s Gold-Foil Experiment Rutherford’s gold-foil experiment yielded evidence of the atomic nucleus. a) Rutherford and his coworkers aimed a beam of alpha particles at a sheet of gold foil surrounded by a fluorescent screen. Most of the particles passed through the foil with no deflection at all. A few particles were greatly deflected. b) Rutherford concluded that most of the alpha particles pass through the gold foil because the atom is mostly empty space. The mass and positive charge are concentrated in a small region of the atom. Rutherford called this region the nucleus. Particles that approach the nucleus closely are greatly deflected.
19
Alpha particles scatter from the gold foil.
4.2 The Atomic Nucleus Alpha particles scatter from the gold foil. Rutherford’s gold-foil experiment yielded evidence of the atomic nucleus. a) Rutherford and his coworkers aimed a beam of alpha particles at a sheet of gold foil surrounded by a fluorescent screen. Most of the particles passed through the foil with no deflection at all. A few particles were greatly deflected. b) Rutherford concluded that most of the alpha particles pass through the gold foil because the atom is mostly empty space. The mass and positive charge are concentrated in a small region of the atom. Rutherford called this region the nucleus. Particles that approach the nucleus closely are greatly deflected.
20
The Rutherford Atomic Model
4.2 The Atomic Nucleus The Rutherford Atomic Model Rutherford concluded that the atom is mostly empty space. All the positive charge and almost all of the mass are concentrated in a small region called the nucleus. The nucleus is the tiny central core of an atom and is composed of protons and neutrons.
21
4.2 The Atomic Nucleus In the nuclear atom, the protons and neutrons are located in the nucleus. The electrons are distributed around the nucleus and occupy almost all the volume of the atom.
22
4.2 Section Quiz 4.2.
23
1. Which of the following is NOT an example of a subatomic particle?
4.2 Section Quiz 1. Which of the following is NOT an example of a subatomic particle? proton molecule electron neutron ANS: B PTS: 1 REF: p. 104 OBJ: 4.2.1
24
2. The nucleus of an atom consists of electrons only. protons only.
4.2 Section Quiz 2. The nucleus of an atom consists of electrons only. protons only. protons and neutrons. electrons and neutrons. ANS: C PTS: 1 REF: p. 107 OBJ: 4.2.2
25
3. Most of the volume of the atom is occupied by the
4.2 Section Quiz 3. Most of the volume of the atom is occupied by the electrons. neutrons. protons and neutrons. protons. ANS: A PTS: 1 REF: p. 108 OBJ: 4.2.2
26
END OF SHOW
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.