Download presentation
Presentation is loading. Please wait.
Published bySamson Leonard Modified over 9 years ago
1
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ Berlin, 02.03.2006 Robustness and Entropy of Biological Networks Thomas Manke Max Planck Institute for Molecular Genetics, Berlin
2
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke Outline Cellular Resilience steady states and perturbation experiments A thermodynamic framework a fluctuation theorem (role of microscopic uncertainty) Network Entropy network data and pathway diversity a global network characterisation Applications f rom structure to function: predicting essential proteins
3
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke Cellular Robustness Empirical observation: Reproducible phenotype Cells are resilient against molecular perturbations maintenance of (non-equilibrium) steady state picture from Forsburg lab, USC
4
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke Perturbation Experiments Knockouts in yeast: (Winzeler,1999) only few essential proteins ! resilience of steady state
5
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke Understanding robustness Dynamical analysis: increasing data on molecular species and processes microscopic description: x(t+1) = f( x(t), p) Topological analysis: qualitative data on molecular relations: network structure determines key properties. An emerging dogma: STRUCTURE DYNAMICS FUNCTION
6
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke A thermodynamic approach Key idea: macroscopic properties follow simple rules, despite our ignorance about microscopic complexity Key tool: Statistical mechanics (Gibbs-Boltzmann): Entropy links microscopic and macroscopic world Key result: Microscopic uncertainties macroscopic resilience
7
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke Fluctuation theorems Equilibrium: Kubo 1950 The return rate to equilibrium state (dissipation) is determined by correlation functions (fluctuations) at equilibrium Ergodic systems at steady-state: Demetrius et al. 2004 Changes in robustness are positively correlated with changes in dynamical entropy “robustness” = return rate to steady state
8
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke Quantifying microscopic uncertainty Network characterisation characterisation of dynamical process Consider stochastic process Network relational data
9
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke Network entropy The stationary distribution i is defined as: P = Entropy Definition (Kolmogorov-Sinai invariant) H(P) = - i i j p ij log p ij = average uncertainty about future state = pathway diversity
10
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke Network Entropy and structural observables circularrandom scale-freestar H=2.0 H=2.3 H=2.9H=4.0 L=12.9 L=3.5 L=3.0L=2.0 Entropy is correlated with many other properties: Distances, degree distribution, degree-degree correlations …
11
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke Network Entropy and Robustness same number of nodes/edges different wiring schemes different entropy Observation: Topological resilience increases with entropy ! Network entropy = proxy for resilience against random perturbations L.Demetrius, T.Manke; Physica A 346 (2005). L. Demetrius,V. Gundlach, G. Ochs; Theor. Biol. 65 (2004)
12
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke From Structure to Function An application: protein interaction network (C.elegans) global network characterisation characterisation of individual proteins ? only 10% show lethal phenotype Hypothesis: Proteins with higher contributions to topological robustness are preferentially lethal (cf. Structure Function paradigm)
13
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke Entropic ranking and essential proteins Entropy decomposition H = i i H i Proposal: rank nodes according to their value of i H i (and not by local connectivity !) Ranked list of N proteins: Entropy rank1234N-1N Lethality index110110 Systematically check whether the top k nodes show an enriched amount of lethal proteins
14
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke
15
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke Systematic checks … false positives/negatives … compartmental bias … similar for yeast … proteins with high contribution to network resilience are preferentially essential !
16
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke Skipped Which Stochastic Process ? from variational principle Network selection & evolution Demetrius & Manke, 2003 Correlation with structural observables emerge as effective correlates of entropy can go beyond
17
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke Summary Cellular Resilience Structure Dynamics Function Thermodynamic approach Network Entropy global network characterization measure of pathway diversity correlates with structural resilience Functional Analysis entropy correlates with lethality
18
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke Thank you ! Collaborators: Lloyd Demetrius Martin Vingron Funding: EU-grant “TEMBLOR” QLRI-CT-2001-00015 National Genome Research Network (NGFN)
19
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke Processes on Networks Consider a simple random walk on a network defined by adjacency matrix A = (a ij ) permissble processes P = (p ij ): a ij = 0 p ij = 0 j p ij = 1 Network characterisation characterisation of dynamical process
20
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke A variational principle log = sup {- ij i p ij log p ij + ij i a ij log p ij } P Perron-Frobenius eigenvalue (topological invariant) corresponding eigenvector v i is strictly positive for irreducible matrices a ij (strongly connected graphs) for Boolean matrices: entropy maximisation
21
Max-Planck-Institut für molekulare Genetik Workshop „Systems Biology“ March 2-3, 2006Thomas Manke A unique process... p ij = a ij v j / v i Arnold, Gundlach, Demetrius; Ann. Prob. (2004) : p ij satisfies the variational principle uniquely ! non-equilibrium extension of Gibbs principle “Gibbs distribution” Network Entropy = KS-entropy of this process
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.