Download presentation
Presentation is loading. Please wait.
Published byDarleen Underwood Modified over 9 years ago
1
9/25/2013PHY 711 Fall 2013 -- Lecture 131 PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 Plan for Lecture 13: Finish reading Chapter 6 1.Canonical transformations 2.Hamilton-Jacobi formalism
2
9/25/2013PHY 711 Fall 2013 -- Lecture 132
3
9/25/2013PHY 711 Fall 2013 -- Lecture 133
4
9/25/2013PHY 711 Fall 2013 -- Lecture 134
5
9/25/2013PHY 711 Fall 2013 -- Lecture 135 Review: Liouville’s theorem: Imagine a collection of particles obeying the Canonical equations of motion in phase space.
6
9/25/2013PHY 711 Fall 2013 -- Lecture 136 Proof of Liouville’e theorem:
7
9/25/2013PHY 711 Fall 2013 -- Lecture 137
8
9/25/2013PHY 711 Fall 2013 -- Lecture 138 0
9
9/25/2013PHY 711 Fall 2013 -- Lecture 139 Notion of “Canonical” distributions
10
9/25/2013PHY 711 Fall 2013 -- Lecture 1310 Note that it is conceivable that if we were extraordinarily clever, we could find all of the constants of the motion!
11
9/25/2013PHY 711 Fall 2013 -- Lecture 1311
12
9/25/2013PHY 711 Fall 2013 -- Lecture 1312 Note that it is conceivable that if we were extraordinarily clever, we could find all of the constants of the motion! Possible solution – Hamilton-Jacobi theory:
13
9/25/2013PHY 711 Fall 2013 -- Lecture 1313
14
9/25/2013PHY 711 Fall 2013 -- Lecture 1314 0 00
15
9/25/2013PHY 711 Fall 2013 -- Lecture 1315 0 00
16
9/25/2013PHY 711 Fall 2013 -- Lecture 1316 Differential equation for S:
17
9/25/2013PHY 711 Fall 2013 -- Lecture 1317 Continued:
18
9/25/2013PHY 711 Fall 2013 -- Lecture 1318 Continued:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.