Download presentation
Presentation is loading. Please wait.
Published byDaniel Newman Modified over 9 years ago
1
Selecting Robust Parameters for Migration Deconvolution University of Utah Jianhua Yu
2
Problem and Goal Outline Main parameter selection Examples Conclusions
3
2-D Poststack MIG (Unocal) 0.6 Depth (km) MD 2.8
4
0 3 km 0 3-D Point Scatterer Model 3 km
5
X (km) Amplitude 1 0 3 0 Y (km) MDMIG X (km) 0 3 0 Y (km) 1 km 3 km 5 km Depth Slides
6
X (km) Amplitude 0 3 0 Y (km) MDMIG X (km) 0 3 0 Y (km) 7 km 9 km 10 km Depth Slides
7
Problem: Improving the stability of MD Algorithm Developed a stable MD filterSolution: Unstable MD at some data sets
8
Outline Main parameter selection Examples Conclusions Problem and Goal
9
Prestack Migration Deconvolution Reflectivity Migrated Section MD is to eliminate this blurring influence in migration image by designing MD operator F T M = L L R Mig: F= (L L ) T R = F M MD: Blurring operator
10
PSMD algorithm: Calculating migration Green’s function with geometry, velocity, and depth level Inverted MD fiter by inversion End of loop on iz Velocity cube For iz=1, nz (depth or time slice) Migrated cube Define the MD filter length MD filter length Aperture width variation along the depth Inversion algorithm-regularization (Hu, 2001)
11
Depth Level i N CDP Depth (km) LL N: MD filtering length L: Aperture width parameter Depth Level 1 L Depth Level N
12
Improved PSMD algorithm: End of loop on iz For iz=1, nz (depth or time slice) Define the MD filter lengthCalculating migration Green’s function with the varied aperture width along the depth and associated with geometry, velocity Inverted MD filter by inversion and applied to the migrated image
13
Outline Main parameter selection Examples Conclusions Problem and Goal
14
0 3 km 0 3-D Point Scatterer Model 3 km 11 X 11 Receivers 11 X 11 Receivers Imaging: dx=dy=50 m dz=100 m 3X3 Sources; 10 km
15
0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) MIG MD Z=1 km Z=3 km Z=5 km Depth Slices
16
0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) MIG MD Z=7 km Z=9 km Z=10 km Depth Slices
17
0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) MIG MD(new) Z=7 km Z=9 km Z=10 km Depth Slices
18
Z=1 km Z=3 km Z=5 km Ky Kx Ky Kx Ky Kx Ky Kx Ky Kx Ky Kx Spectrum of Green’s function (New)Spectrum of Green’s function (Old)
19
Z=7 km Z=9 km Z=10 km Ky Kx Ky Kx Ky Kx Ky Kx Ky Kx Ky Kx Spectrum of Green’s function (New)Spectrum of Green’s function (Old)
20
0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) MD MD (new) Z=1 km Z=3 km Z=5 km Depth Slices
21
0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) Z=7 km Z=9 km Z=10 km MD MD (new) Depth Slices
22
Outline Main parameter selection Examples: 2-D Meandering Model Conclusions Problem and Goal
23
0 3 km 0 3-D Point Scatterer Model 3 km Source: 5X5 Receiver: 21X 21
24
Model Meandering Stream Model PSDM ImageMD
25
Outline Main parameter selection Examples: 2-D marine data Conclusions Problem and Goal
26
Poststack MIG from Unocal 0.6 Depth (km) MD 2.8
27
MD 0.6 Depth (km) MD 2.8
28
MIG 0.6 Depth (km) MD 2.8
29
P-P PSTM by Unocal 0.5 5 Time (s) MD
30
MIGMD 0.5 5 Time (s)
31
MIG MD
32
Outline Main parameter selection Examples 2-D PS marine data Conclusions Problem and Goal
33
PS PSTM Image ( by Unocal) 0 6 X (km) 0 8 Time (s)
34
0 6 X (km) 0 8 Time (s) MDPSTMPSTMD
35
0 6 X (km) 0 8 Time (s) MD PSTM PSTMD
36
Outline Main parameter selection Examples 2-D Land data Conclusions Problem and Goal
37
MD Time (s) Mig
38
Time (s)
40
Outline Main parameter selection Examples 3-D SEG/EAGE data Conclusions Problem and Goal
41
3-D SEG/EAGE Salt Model 1.0-1.4 km
42
MD (z=1 km)Mig (z=1 km) X (km) 3 10 Y (km) 59.85 X (km)
43
Problem and Goal Outline Main parameter selection Examples Conclusions
44
Conclusions Filter length N=5-11; Parameter that controls aperture width ranges from 0.005-0.04. Varied aperture width in MD with the depth improved the stability of MD Aperture width and filter length in designing MD filter are two key parameters
45
Acknowledgments Thank Alan Leeds for his constructive suggestions and providing challenging data to test our MD in Chevron.Thank Alan Leeds for his constructive suggestions and providing challenging data to test our MD in Chevron. Thank 2002 UTAM sponsors for their financial supportThank 2002 UTAM sponsors for their financial support Thank Aramco, ChevronTaxco, and Unocal for providing the data setsThank Aramco, ChevronTaxco, and Unocal for providing the data sets
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.