Download presentation
Presentation is loading. Please wait.
Published byHilda Hunt Modified over 9 years ago
1
Interaction of X-rays with Matter and Imaging Gocha Khelashvili Assistant Research Professor of Physics Illinois Institute of Technology Research Physicist EXELAR Medical Corporation
2
The Plan X-ray Interactions with Matter Used at Imaging Energies Photoelectric Effect Coherent Scattering Incoherent Scattering Refraction Small- and Ultra-small Angle Scattering Radiography How does it work? Imaging Parameters and Sources of X-ray contrast Drawbacks of Radiography Diffraction Enhanced Imaging (DEI) How does it work? Imaging Parameters and Sources of X-ray contrast Drawbacks of DEI Multiple Image Radiography (MIR-Planar Mode) How does it work? Sources of X-ray contrast MIR parameters and images MIR Model Based on Discrete Scatterers Multiple scattering series approach and MIR transport equation Solution of MIR transport equation Imaging Parameters Laboratory DEI / MIR Machine Summary
3
Photoelectric Effect
4
Thompson (Classical) Scattering
6
Rayleigh Scattering (Coherent Scattering)
8
Compton Scattering (Incoherent Scattering)
10
Effects of Binding Energy in Compton (Incoherent) Scattering
13
Radiography Setup
15
Radiography Setup and Imaging Principles Double Crystal Monochromator Si(333) Object Radiology Setup Area Detector Incident X-ray beam Attenuation Law Image Image Contrast
16
Drawbacks of Radiography Object PixelDetector Pixel Attenuated Beam (by absorption) Incoherently Scattered Beam Image Contrast
17
DEI Setup and Imaging Principles Area Detector Object Analyzer Crystal Si(333) DEI Setup Incident X-ray beam Double Crystal Monochromator Si(333)
18
Formation of DE Images Object Pixel Detector Pixel Enhanced Attenuated Beam Incoherently Scattered Beam is Blocked by Crystal
19
1050-10-5 Low Angle Side High Angle Side 0.40 0.20 0.00 0.60 0.80 1.00 Analyzer Angle ( radians) Physics of DEI Pisano, Johnston(UNC); Sayers(NCSU); Zhong (BNL); Thomlinson (ESRF); Chapman(IIT) Relative Intensity I/Io Data from NSLS X27
20
Calculation of DEI Images 1050-10-5 Low Angle Side High Angle Side 0.40 0.20 0.00 0.60 0.80 1.00 Analyzer Angle ( rad) Relative Intensity I/Io
21
6 1 0 - 0 5 4 MapConventional DEI Comparison - Conventional and DEI ACR - Phantom
22
DEI image of ACR phantom - smallest calcifications Data from NSLS X27
23
ConventionalDEI - AbsorptionDEI - Refraction Cancer in Breast Tissue BNL Sept 1997 Pisano, Johnston(UNC); Sayers(NCSU); Zhong (BNL); Thomlinson (ESRF); Chapman(IIT)
24
Drawbacks of DEI Object Pixel Detector Pixel
25
Experimental Evidence of Problems in DEI
26
Experimental Results
27
Refraction images Profiles thick paper thin paper no paper 050100150200 0 0.2 0.4 0.6 0.8 1 Position (pixels) MIR DEI MIR DEI
30
Generalization to CT Reconstruction
31
Discrete Scatterer Model Object Voxel Khelashvili, Brankov (IIT), Chapman (U.Sask), Anastasio, Yang (IIT), Zang (BNL), Wernick (IIT)
32
Multiple Ultra-Small Angle Scattering Radiation Transport Theory Approach
33
MIR Radiation Transfer Equation
34
Ultra-Small Angle Approximation
35
General Solution
36
Phase Function
37
Khelashvili, Brankov (IIT), Chapman (U.Sask), Anastasio, Yang (IIT), Zang (BNL), Wernick (IIT)
38
Plane Wave Solution Khelashvili, Brankov (IIT), Chapman (U.Sask), Anastasio, Yang (IIT), Zang (BNL), Wernick (IIT)
39
Plane Wave Solution Khelashvili, Brankov (IIT), Chapman (U.Sask), Anastasio, Yang (IIT), Zang (BNL), Wernick (IIT)
40
Imaging Parameters Khelashvili, Brankov (IIT), Chapman (U.Sask), Anastasio, Yang (IIT), Zang (BNL), Wernick (IIT)
41
Experimental Conformation Lucite container – wedge shaped. Polymethylmethacrylate (PMMA) microspheres in glycerin. Khelashvili, Brankov (IIT), Chapman (U.Sask), Anastasio, Yang (IIT), Zang (BNL), Wernick (IIT)
42
Experimental Conformation Khelashvili, Brankov (IIT), Chapman (U.Sask), Anastasio, Yang (IIT), Zang (BNL), Wernick (IIT)
44
labDEI System Detector Analyzer Pre-mono & Mono X-ray Source Morrison, Nesch, Torres, Khelashvili (IIT), Hasnah (U. Qatar) Chapman (U.Sask)
45
1cm cartilage bone Lab DEI System tissue images Morrison, Nesch, Torres, Khelashvili, Chapman (IIT) Muehleman (Rush Medical College)
46
Summary First reliable Theoretical Model of DEI – MIR has been developed. Model can be used to simulate experiments starting from source, through crystals (this was known), through object (was unknown), through analyzer crystal (partially known – dynamical theory of diffraction – but crystal and beam specific calculations need to be done). CT reconstructions – some steps are already taken in this direction – Miles N. Wernick et al “Preliminary study of multiple-image computed tomography” CSRRI (IIT) / Nesch LLC – are developing in-lab research DEI instrument
47
Acknowledgements Funded by NIH/NIAMS. L.D. Chapman (Anatomy and Cell Biology, University of Saskatchewan, Canada) J. Brankov, M. Wernick, Y. Yang, M. Anastasio (Biomed. Engineering, IIT) T. Morrison and I. Nesch (CSRRI, IIT) C. Muehleman (Department of Anatomy and Cell Biology, Rush Medical College)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.