Download presentation
Presentation is loading. Please wait.
Published byDebra Leona Booth Modified over 9 years ago
1
GARY A. POLIS INTRAGUILD PREDATION Presented by: Maria Vozzo, BIOL 7083 April 16, 2013
2
Mini-Biography Education: Ph.D., Biology, UC-Riverside, 1977 M.A., UC-Riverside, 1975 Loyola University, 1969 Professor of Ecology at University of California – Davis 1998-2000 Vanderbilt University 1979-1998 Oregon State University 1977-1979 Drowned in a boating accident in the Sea of Cortez while on a field expedition in 2000 Gary Allan Polis, 1946-2000 www.news.ucdavis.edu
3
Field Studies “The evidence argues that actual community food webs are extraordinarily more complex than those webs cataloged by theorists. I argue that most cataloged webs are over simplified caricatures of actual communities…that they poorly represent real biological communities. Consequently, the practice of abstracting empirical regularities from such catalogs yields an inaccurate and artifactual view of trophic interactions within communities. Contrary to strong assertions by many theorists, patterns from food webs of real communities generally do not support predictions arising from dynamic and graphic models of food-web structure.” Polis 1991
4
Research Interests Scorpions, spiders, desert communities Food web complexity Trophic Cascades Intraguild Predation (IGP) “The killing and eating of prey species by a predator that also can utilize the resources of those prey” Competition and predation by species in the system Polis et al., 1989
5
Research Interests Scorpions, spiders, desert communities Food web complexity Trophic Cascades Intraguild Predation (IGP) “The killing and eating of prey species by a predator that also can utilize the resources of those prey” Competition and predation by species in the system Polis et al. 1989
6
Key papers Polis, G. A., C. A. Myers and R. D. Holt. 1989. The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annual review of ecology and systematics 20: 297-330. Cited by 1118 Polis, G. A. and R. D. Holt. 1992. Intraguild predation: The dynamics of complex trophic interactions. Trends in Ecology & Evolution 7: 151-154. Cited by 489 Holt, R. D. and G. A. Polis. 1997. A theoretical framework for intraguild predation. The American Naturalist 149: 745-764. Cited by 530
7
Key Concepts Omnivory: consuming resources from more than one trophic level Competition vs. Predation Competition theory: Resource use, coexistence, exclusion, and alternative stable states among species Predation theory: How predators and prey persist, predator impacts on prey, oscillations among populations Polis and Holt 1992
8
Shared Resource (Basal prey) Intraguild Predation Polis et al. 1989
9
Intermediate Predator (Intraguild or IG Prey) Shared Resource (Basal prey) Intraguild Predation Polis et al. 1989
10
Top Predator (Intraguild or IG Predator) Intermediate Predator (Intraguild or IG Prey) Shared Resource (Basal prey) Intraguild Predation Polis et al. 1989
11
Top Predator (Intraguild or IG Predator) Intermediate Predator (Intraguild or IG Prey) Shared Resource (Basal prey) Intraguild Predation Polis et al. 1989
12
Top Predator (Intraguild or IG Predator) Intermediate Predator (Intraguild or IG Prey) Shared Resource (Basal prey) Predation Intraguild Predation Polis et al. 1989
13
Top Predator (Intraguild or IG Predator) Intermediate Predator (Intraguild or IG Prey) Shared Resource (Basal prey) Predation Competition Intraguild Predation Polis et al. 1989
14
Intraguild Predation Polis and Holt 1992
15
Intraguild Predation Polis and Holt 1992 Predators, Consumers & Resource (no IGP)
16
Intraguild Predation Polis and Holt 1992 Predators, Consumers & Resource (no IGP) IGP
17
Theory Holt and Polis 1997 SymbolDefinition a’Functional response of IG predator to resource α Functional response of IG predator to IG prey aFunctional response of IG prey to resource m, m’Density dependent mortality rates b, b’ Resource consumption IG prey and IG predator reproduction β IG predator benefit from consuming IG prey
18
Without IGP Isocline of predator (species A) Isocline of prey (species B) Polis et al. 1989 No IGP - A excludes B; IGP enhances A No IGP - priority effect; IGP - dominance by A No IGP – B excludes A; IGP – priority effect No IGP - B excludes A; IGP - coexistence Competitors coexist with no IGP; IGP A and B
19
Must species B be a superior competitor in order to exist in IGP? Without IGP Isocline of predator (species A) Isocline of prey (species B) Polis et al. 1989 No IGP - A excludes B; IGP enhances A No IGP - priority effect; IGP - dominance by A No IGP – B excludes A; IGP – priority effect No IGP - B excludes A; IGP - coexistence Competitors coexist with no IGP; IGP A and B
20
IGP is ubiquitous in nature Polis et al. 1989
21
IGP is ubiquitous in nature Polis et al. 1989
22
Community Ecology Implications of IGP Community structure Exclusion, coexistence, alternative stable states (Polis et al. 1988, Holt and Polis 1997) Resource use Superior competitors (Polis et al. 1989) Direct vs. Indirect effects (Polis and Holt 1992) Exclude or decrease resources Alter behavioral interactions Trophic cascades (Polis and Holt 1992) Predation impacts lower trophic levels
23
Legacy of IGP: Trophic Cascades Addition of top predator, suppresses larvae, indirectly benefiting aphids. Top predator addition can suppress herbivore population Rosenheim et al. 1993 + -
24
Legacy of IGP: Indirect and Direct Effects Wissinger and McGrady 1993
25
Legacy of IGP: Indirect and Direct Effects IG predator presence (Tramea) reduced feeding of IG prey (Erythemis) Indirect effect (behavior) Direct effect (consumption) Wissinger and McGrady 1993
26
Legacy of IGP How is IGP influenced by other factors such as habitat structure and complexity? Janssen et al. 2007
27
Legacy of IGP: Community Structure, Resource Use, Trophic Cascades, and Indirect & Direct Effects Research Questions: How does intraguild predation and habitat structure affect species interactions on an oyster reef? Sheepshead Mud crab-bivalve interaction Resource survival Consumption or indirect effects?
28
Oyster Reef Communities Drastic declines in oyster populations 85% loss worldwide Oyster reefs provide vital habitat to many species Common Oyster Reef Residents SC DNR Beck et al. 2011
29
Intraguild Predation Sheepshead (Archosargus probatocephalus) Mud crabs Mussels (Geukensia demissa) SC DNR sms.si.edu Top Predator Intermediate Predator Basal Prey (Panopeus herbstii) Predator-Prey Interactions Trophic Cascades Holt and Polis 1997, Janssen et al. 2007
30
IGP and Oyster reef complexity Sheepshead Mud crabs Mussels SC DNR sms.si.edu Top Predator Intermediate Predator Basal Prey − + Low Structure Reef - - - + High Structure Reef Sheepshead Mud crabs Mussels SC DNR sms.si.edu Top Predator Intermediate Predator Basal Prey − + + - - - behavioral effect consumptive effect indirect effects Vozzo et al. 2012, presentation
31
IGP and Community Ecology Community structure Resource use Direct vs. Indirect effects Trophic cascades “…intraguild predation is a ubiquitous and often powerful interaction central to the structure and functioning of many natural communities; closer attention to it will enrich our understanding of population and community ecology.” Polis et al. 1989
32
Questions? Thank you!
33
Citations Beck, M. W. et al. 2011. Oyster reefs at risk and recommendations for conservation, restoration, and management. BioScience 61: 107-116. Grawbowski, J. 2004. Habitat complexity disrupts predator-prey interactions but not the trophic cascade on oyster reefs. Ecology 85: 995-1004. Janssen, A. et al. 2007. Habitat structure affects intraguild predation. Ecology 88: 2713-2719. Holt, R. D. and G. A. Polis. 1997. A theoretical framework for intraguild predation. The American Naturalist 149: 745-764. Polis, G. A. 1991. Complex-trophic interactions in deserts: an empirical critique of food-web theory. The American Naturalist 138: 123-155. Polis, G. A., C. A. Myers and R. D. Holt. 1989. The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annual review of ecology and systematics 20: 297-330. Polis, G. A. and R. D. Holt. 1992. Intraguild predation: The dynamics of complex trophic interactions. Trends in Ecology & Evolution 7: 151-154. Rosenheim, J. A., L. R. Wilhoit and C. A. Armer. 1993. Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96:439-449. Saxon, Wolfgang. “Gary Allan Polis, 53, an Expert On Scorpions and Desert Ecology”. The New York Times. 01 April 2000. 20 February 2013..http://www.nytimes.com/2000/04/01/us/gary-allan- polis-53-an-expert-on-scorpions-and-desert-ecology.html Wissinger, S. and J. McGrady. 1993. Intraguild predation and competition between larval dragonflies: direct and indirect effects on shared prey. Ecology 74:207-218.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.