Download presentation
Presentation is loading. Please wait.
Published byJonah McGee Modified over 9 years ago
1
Jörg Schumacher Dept. of Mechanical Engineering, Technische Universität Ilmenau, Germany Local dissipation scales in turbulence
2
Collaborators Katepalli R. Sreenivasan (ICTP Trieste) Victor Yakhot (Boston University)
3
Outline How can local dissipation scales be defined and determined? What is their impact on the physics in the inertial range of turbulence?
4
Non-premixed turbulent combustion Fuel Air Example: Jet diffusion flame F=CH 4 : Z st =0.055
5
Laser diagnostics (Jeffrey A. Sutton, PhD thesis, U of Michigan 2005)
6
Local dissipation scales Kolmogorov length Paladin & Vulpiani (1987), Frisch & Vergassola (1991): Intermediate dissipation range (IDR) spanned by (h) Chevillard et al. (2005): Rapid increase of F( r v) between - and + Schumacher et al. (2005):
7
Why high-resolution DNS? Spectral resolution larger by a factor of 8 compared to standard case
8
Dynamical definition of dissipation scale
9
Finest local dissipation scales Finest dissipation scalesEnergy dissipation maxima
11
Theoretical prediction for Q (Yakhot, Physica D 2006) Mellin transform Saddle point approximation
12
Comparison with DNS Qualitative agreement between DNS and theoretical model
13
Local scales and anomalous scaling (Hill, J.Fluid Mech. 2002; Yakhot, J. Fluid Mech. 2003) unclosed term v(x+r) u(x+r) v(x) u(x)
14
Local scales and anomalous scaling (Hill, J.Fluid Mech. 2002; Yakhot, J. Fluid Mech. 2003; Gotoh & Nakano, J. Stat. Phys. 2003) unclosed term for r→ v(x+r) u(x+r) v(x) u(x)
15
Exponents for velocity derivatives (Yakhot & Sreenivasan, J. Stat. Phys 2005)
16
Scaling of velocity gradient moments Theory 0.157 0.489 0.944 0.465 High-Re experiments: 0.71 (Benzi et al., PRE 1993)
17
Outlook: Far-dissipation range Kraichnan J. Fluid Mech.1959 Chen, Doolen, Herring, Kraichnan, Orszag & She, Phys. Rev. Lett. 1993 Kraichnan (1959): Universal behavior ~(k/k d ) 3 exp(-11k/k d ) Reynolds number dependence in high-Schmidt number mixing
18
Summary Local dissipation scales are defined in a dynamical content. Velocity gradient statistics on Kolmogorov and sub- Kolmogorov scales leads to asymptotic scaling exponents for velocity increment statistics on super- Kolmogorov scales. Numerical effort has to go into the correct resolution of finest scales or strongest gradients.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.