Download presentation
Published byPatrick Wilson Modified over 9 years ago
1
Xin Zhang, Zhichao Ye, Lianwen Jin, Ziyong Feng, and Shaojie Xu
A New Writing Experience : Finger Writing in the Air Using a Kinect Sensor Xin Zhang, Zhichao Ye, Lianwen Jin, Ziyong Feng, and Shaojie Xu FINGER-WRITING-IN-THE-AIR SYSTEM USING KINECT SENSOR Zhichao Ye, Xin Zhang, Lianwen Jin, Ziyong Feng, Shaojie Xu IEEE International Conference on Multimedia and Expo Workshops (ICMEW), 2013 MultiMedia, IEEE, 2013
2
Outline Introduction Related Work Proposed Method Experimental Results
Conclusion
3
Introduction
4
Introduction So far most of writing systems still rely on:
Keyboard Touch screen …(Extra devices) Essential goal of HCI: Making interaction between user and computer more natural Anaglyph 紅藍眼鏡 Polarization 偏光眼鏡 – 在一般LCD TV前面貼上一層微相位差膜(Micro-retarder),利用光的偏振方向 來將左眼與右眼的影像分離 Shutter 快門眼鏡 - 更新頻率120Hz以上播放左、右眼視角畫面,藉由快速切換左右眼資訊,使得左右眼分別看到正確的左眼與右眼畫面,經過視覺暫留與大腦融合後,即可呈現出具 深度感的立體影像。 此技術所顯示的3D畫面解析度不會下降,且立體效果非常的好。 然而由於要提升3D影像品質,因此左眼與右眼觀看螢幕的時間非常短,使得整體亮度會下降許多,亦是目前研發上需克服的重點。
5
Introduction In this paper:
Propose a finger-writing-in-the-air system (based on Kinect): Using depth, color and motion information Real-time User-friendly and unconstrained Anaglyph 紅藍眼鏡 Polarization 偏光眼鏡 – 在一般LCD TV前面貼上一層微相位差膜(Micro-retarder),利用光的偏振方向 來將左眼與右眼的影像分離 Shutter 快門眼鏡 - 更新頻率120Hz以上播放左、右眼視角畫面,藉由快速切換左右眼資訊,使得左右眼分別看到正確的左眼與右眼畫面,經過視覺暫留與大腦融合後,即可呈現出具 深度感的立體影像。 此技術所顯示的3D畫面解析度不會下降,且立體效果非常的好。 然而由於要提升3D影像品質,因此左眼與右眼觀看螢幕的時間非常短,使得整體亮度會下降許多,亦是目前研發上需克服的重點。
6
Related Work
7
Related work Hand Segmentation Skin color: Depth: Motion: X X X
Gaussian (mixture) model[2] Illumination and hand-face overlapping Depth: noise Motion: Motion Cue[3] The hand should be the most distinct moving object. X X X
8
Related work Fingertip Detection Curvature[6] Template matching[1]
[1] L. Jin, D. Yang, L. Zhen, and J. Huang. A novel vision based finger-writing character recognition system. Journal of JCSC, 16(3):421–436, 2007. [2] S. L. Phung, A. Bouzerdoum, and D. Chai. Skin segmentation using color pixel classification: Analysis and comparison. IEEE Trans. on PAMI, 27:148–154, 2005. [3] Jonathan Alon, Vassilis Athitsos, Quan Yuan and Stan Sclaroff. A Unified Framework for Gesture Recognition and Spatiotemporal Gesture Segmentation. IEEE Trans. on PAMI, 31:1685–1699, 2009. [6] D. Lee and S. Lee. Vision-based finger action recognition by angle detection and contour analysis. Journal of ETRI, 33(3):415–422, 2011. Fingertip Detection Curvature[6] Template matching[1] Geodesic distance
9
Fingertip Identification
Related work [10] Ziyong Feng, Shaojie Xu, Xin Zhang, Lianwen Jin, Zhichao Ye and WeixinYang. Real-time Fingertip Tracking and Detection using Kinect Depth Sensor for a New Writing-in the Air System. In Proc. of IEEE ICIMCS, 2012. Writing-in-the-air system [10]: K-means Hand Segmentation Data Conversion Region Clustering Fingertip Identification Arm point Fingertip
10
Proposed Method
11
Flow Chart Hand Segmentation Fingertip Detection
12
Hand Segmentation DSB-MM segmentation algorithm
13
Hand Segmentation Depth Model Solve the issues: Hand D: lighting
hand-face overlapping moving background Hand D: R(n) : hand region at frame n ω : : growth factor ↑ ↑
14
Hand Segmentation Depth Model A static hand A moving hand
15
Reduce the storage size
Hand Segmentation Skin Model YCbCr color space Quantify Y Component into three regions: Bright 170<𝑌≤255 Normal 84<𝑌≤169 Dark 0<𝑌≤84 Gaussian classifier[2]: Reduce the storage size 𝑚 𝑠 𝑖 : mean vector of the i-th skin class 𝐶 𝑠 𝑖 : covariance of the i-th skin class 𝑚 𝑛𝑠 𝑖 : mean vector of the i-th non-skin 𝐶 𝑛𝑠 𝑖 :covariance of the i-th non-skin class skin Non-skin (Squared Mahalanobis distance)
16
Hand Segmentation Skin Model Color Image Depth Model Skin Model
Depth + Skin
17
Hand Segmentation Background Model Codebook background model[8]
[8] K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis. Real time foreground-background segmentation using code book model. Real-Time Imaging, 11:172–185, 2005. Background Model Codebook background model[8]
18
Hand Segmentation Background Model Codebook background model[8]
Color image A Foreground result A Color image B Foreground result B
19
Hand Segmentation DSB-MM segmentation algorithm
20
Hand Segmentation DSB-MM segmentation algorithm
Each model should have different reliabilities. Adaptive voting system A pixel is kept as hand pixel by
21
Hand Segmentation Artificial Neural Network (ANN)
(1) All the models contribute to the final result. (2) None of them is absolutely reliable. “1 0 0”, “0 1 0” or “0 0 1” representing 1/3, 1/2 or 2/3 Training: resilient back propagation algorithm (RPROP)
22
Hand Segmentation Origin Depth Skin Background Mixture
23
Flow Chart Hand Segmentation Fingertip Detection
24
Fingertip Detection Side-mode & Frontal-mode -- (Red) : Side-mode
ㄧ(Blue) : Frontal-mode
25
Fingertip Detection Side-mode
Fingertip : the farthest point from the arm point Palm point: Ellipse fitting technique (center point) Arm point: The center of the increased region
26
Fingertip Detection Side-mode The farthest distance to the arm point:
Side-Mode Criterion:
27
Fingertip Detection Frontal-mode
Fingertip : the point with the smallest depth value
28
Experimental Results
29
Experimental Results 375 videos(44522 frames) Intel Core i5-2400 CPU
3.10 GHz and 4 Gbytes of RAM 20 frames per second(fps) 375 videos(44522 frames) Recognition of the classifier: 6763 frequently used Chinese character 26 English letters (upper case & lower case) 10 digits
30
Experimental Results Finger-writing character recognition
Linking all detected fingertip positions + mean filter Modified quadratic discriminant function (MQDF) character classifier[9] [9] T. Long and L. Jin. Building Compact MQDF Classifier for Large Character Set Recognition by Subspace Distribution Sharing. Pattern Recognition, 41(9): , 2008.
31
Experimental Results Error distance (Fingertip detection):
32
Experimental Results
33
Experimental Results
34
Conclusion
35
Conclusion Propose a real-time finger-writing-in-the-air system
Hand Segmentation: Depth + Skin + Motion Adaptive depth threshold of hand region Fingertip Detection: Side-mode Frontal-mode
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.