Download presentation
Published byAudrey Charles Modified over 9 years ago
1
5-5 Indirect Proof and Inequalities in One Triangle Warm Up
Lesson Presentation Lesson Quiz Holt McDougal Geometry Holt Geometry
2
Warm Up 1. Write a conditional from the sentence “An isosceles triangle has two congruent sides.” 2. Write the contrapositive of the conditional “If it is Tuesday, then John has a piano lesson.” 3. Show that the conjecture “If x > 6, then 2x > 14” is false by finding a counterexample. If a ∆ is isosc., then it has 2 sides. If John does not have a piano lesson, then it is not Tuesday. x = 7
3
Objectives Write indirect proofs. Apply inequalities in one triangle.
4
Vocabulary indirect proof
5
So far you have written proofs using direct reasoning
So far you have written proofs using direct reasoning. You began with a true hypothesis and built a logical argument to show that a conclusion was true. In an indirect proof, you begin by assuming that the conclusion is false. Then you show that this assumption leads to a contradiction. This type of proof is also called a proof by contradiction.
7
When writing an indirect proof, look for a contradiction of one of the following: the given information, a definition, a postulate, or a theorem. Helpful Hint
8
Example 1: Writing an Indirect Proof
Write an indirect proof that if a > 0, then Step 1 Identify the conjecture to be proven. Given: a > 0 Prove: Step 2 Assume the opposite of the conclusion. Assume
9
Example 1 Continued Step 3 Use direct reasoning to lead to a contradiction. Given, opposite of conclusion Zero Prop. of Mult. Prop. of Inequality 1 0 Simplify. However, 1 > 0.
10
Example 1 Continued Step 4 Conclude that the original conjecture is true. The assumption that is false. Therefore
11
Check It Out! Example 1 Write an indirect proof that a triangle cannot have two right angles. Step 1 Identify the conjecture to be proven. Given: A triangle’s interior angles add up to 180°. Prove: A triangle cannot have two right angles. Step 2 Assume the opposite of the conclusion. A triangle has two right angles.
12
Check It Out! Example 1 Continued
Step 3 Use direct reasoning to lead to a contradiction. m1 + m2 + m3 = 180° 90° + 90° + m3 = 180° 180° + m3 = 180° m3 = 0° However, by the Protractor Postulate, a triangle cannot have an angle with a measure of 0°.
13
Check It Out! Example 1 Continued
Step 4 Conclude that the original conjecture is true. The assumption that a triangle can have two right angles is false. Therefore a triangle cannot have two right angles.
14
The positions of the longest and shortest sides of a triangle are related to the positions of the largest and smallest angles.
15
Example 2A: Ordering Triangle Side Lengths and Angle Measures
Write the angles in order from smallest to largest. The shortest side is , so the smallest angle is F. The longest side is , so the largest angle is G. The angles from smallest to largest are F, H and G.
16
Example 2B: Ordering Triangle Side Lengths and Angle Measures
Write the sides in order from shortest to longest. mR = 180° – (60° + 72°) = 48° The smallest angle is R, so the shortest side is . The largest angle is Q, so the longest side is . The sides from shortest to longest are
17
Check It Out! Example 2a Write the angles in order from smallest to largest. The shortest side is , so the smallest angle is B. The longest side is , so the largest angle is C. The angles from smallest to largest are B, A, and C.
18
Check It Out! Example 2b Write the sides in order from shortest to longest. mE = 180° – (90° + 22°) = 68° The smallest angle is D, so the shortest side is . The largest angle is F, so the longest side is . The sides from shortest to longest are
19
A triangle is formed by three segments, but not every set of three segments can form a triangle.
20
A certain relationship must exist among the lengths of three segments in order for them to form a triangle.
21
Example 3A: Applying the Triangle Inequality Theorem
Tell whether a triangle can have sides with the given lengths of 7, 10, 19. Explain. No—by the Triangle Inequality Theorem, a triangle cannot have these side lengths.
22
Example 3B: Applying the Triangle Inequality Theorem
Tell whether a triangle can have sides with the given lengths of 2.3, 3.1, 4.6. Explain. Yes—the sum of each pair of lengths is greater than the third length.
23
Check It Out! Example 3a Tell whether a triangle can have sides with the given lengths of 8, 13, 21. Explain. No—by the Triangle Inequality Theorem, a triangle cannot have these side lengths.
24
Check It Out! Example 3b Tell whether a triangle can have sides with the given lengths of 6.2, 7, 9. Explain. Yes—the sum of each pair of lengths is greater than the third side.
25
Example 4: Finding Side Lengths
The lengths of two sides of a triangle are 8 inches and 13 inches. Find the range of possible lengths for the third side. Let x represent the length of the third side. Then apply the Triangle Inequality Theorem. x + 8 > 13 x + 13 > 8 > x x > 5 x > –5 21 > x Combine the inequalities. So 5 < x < 21. The length of the third side is greater than 5 inches and less than 21 inches.
26
Check It Out! Example 4 The lengths of two sides of a triangle are 22 inches and 17 inches. Find the range of possible lengths for the third side. Let x represent the length of the third side. Then apply the Triangle Inequality Theorem. x + 22 > 17 x + 17 > 22 > x x > –5 x > 5 39 > x Combine the inequalities. So 5 < x < 39. The length of the third side is greater than 5 inches and less than 39 inches.
27
Example 5: Travel Application
The figure shows the approximate distances between cities in California. What is the range of distances from San Francisco to Oakland? Let x be the distance from San Francisco to Oakland. x + 46 > 51 x + 51 > 46 > x Δ Inequal. Thm. x > 5 x > –5 97 > x Subtr. Prop. of Inequal. 5 < x < 97 Combine the inequalities. The distance from San Francisco to Oakland is greater than 5 miles and less than 97 miles.
28
Let x be the distance from Seguin to Johnson City.
Check It Out! Example 5 The distance from San Marcos to Johnson City is 50 miles, and the distance from Seguin to San Marcos is 22 miles. What is the range of distances from Seguin to Johnson City? Let x be the distance from Seguin to Johnson City. x + 22 > 50 x + 50 > 22 > x Δ Inequal. Thm. x > 28 x > –28 72 > x Subtr. Prop. of Inequal. 28 < x < 72 Combine the inequalities. The distance from Seguin to Johnson City is greater than 28 miles and less than 72 miles.
29
Lesson Quiz: Part I 1. Write the angles in order from smallest to largest. 2. Write the sides in order from shortest to longest. C, B, A
30
Lesson Quiz: Part II 3. The lengths of two sides of a triangle are 17 cm and 12 cm. Find the range of possible lengths for the third side. 5 cm < x < 29 cm
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.