Download presentation
Presentation is loading. Please wait.
Published byDarleen Stafford Modified over 9 years ago
1
Day 2 and Day 3 notes
2
1.4 Definition of the Trigonometric Functions OBJ: Evaluate trigonometric expressions involving quadrantal angles OBJ: Find the angle of smallest possible measure coterminal with a given angle
3
13) cos 90 º + 3 sin 270 º + 3( ) 0 + 3( ) 0 + 3(-1) -3
4
15) 3 sec 180 – 5 tan 360 3( ) – 5( ) 3(-1) – 5( ) 3(-1) – 5(0) -3
5
17) tan360 + 4sin180 + 5cos 2 180 + 4( ) + 5( ) 2 0 + 4( ) + 5( ) 2 0 + 4(0) + 5( ) 2 0 + 4(0) + 5(-1) 2 5
6
19) sin 2 180 + cos 2 180 + ( ) 2 0 + ( ) 2 0 + (-1) 2 1
7
21)sec 2 180 - 3sin 2 360 + 2cos180 ( ) 2 – 3( ) 2 + 2 ( ) (-1) 2 – 3(0) 2 + 2 (-1) 1 – 2
8
23) 2sec 2 360 -4sin 2 90 + 5cos180 2( ) 2 – 4( ) 2 + 5( ) 2(1) 2 – 4( ) 2 + 5( ) 2(1) 2 – 4(1) 2 + 5( ) 2(1) 2 – 4(1) 2 + 5(-1) 2 – 4 + 5 3
9
-4 sin 90 +3 cos 180 +2 csc 270 -4( ) + 3 + 2 -4(1) + 3 + 2 -4(1) + 3 -1 + 2 -4(1) + 3 -1 + 2 -1 – 4 + 3 + 2 1
10
DEF: Coterminal Angles Angles with the same initial side and the same terminal side
11
EX: Find the angles of smallest possible measure coterminal with the following angles: 908 y x 5 5 -5
12
EX: Find the angles of smallest possible measure coterminal with the following angles: 908 908 – 720 188 y x 5 5 -5
13
EX: Find the angles of smallest possible measure coterminal with the following angles: - 75 y x 5 5 -5
14
EX: Find the angles of smallest possible measure coterminal with the following angles: - 75 360 – 75 285 y x 5 5 -5
15
EX 4 Find the values of the six trigonometric functions for an angle of 90 . P 39 Sin = Y = 1 Csc = R = 1 R 1 Y 1 (0, 1) Cos = X = 0 Sec = R = 1 = Ø R 1 X 0 Tan = Y = 1 = Ø Cot = X = 0 X 0 Y 1 y x 5 5 -5
16
DEF: Quadrantal angles TABLE OF VALUES OF THE SIX TRIGONOMETRIC FUNCTIONS OF QUAD. S Sin Cos Tan Cot Sec Csc 0010Ø1Ø 9010Ø0Ø1 18000Ø Ø 2700Ø0Ø 360010Ø1Ø 45010Ø0Ø1
17
EX: 1 The terminal side of an angle in standard position goes through the point ( 8, 15 ). Find the values of the six trigonometric functions of P 35 Sin = Y 15 Csc = R 17 (8, 15) R 17 Y 15 Cos = X 8 Sec = R 17 R 17 X 8 15 Tan = Y 15 Cot = X 8 X 8 Y 15 8 y x 5 5 -5 y x 5 5
18
EX 2 The terminal side of an angle in standard position goes through the point (-3, - 4 ). Find the values of the six trigonometric functions of . P 36 Sin = Y = -4 Csc = R = 5 R 5 Y -4 Cos = X = -3 Sec = R = 5 R 5 X -3 Tan = Y = 4 Cot = X = -3 -3 X -3 Y 4 -4 (-3,-4) y x 5 5 -5
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.