Download presentation
Presentation is loading. Please wait.
Published bySamuel Walker Modified over 9 years ago
1
Implications of the H 3 + + H 2 H 2 + H 3 + reaction for the ortho- to para-H 3 + ratio in interstellar clouds Kyle N. Crabtree, Lt. Col. Brian A. Tom, USAF, Carrie A. Kauffman, Brett A. McGuire, and Benjamin J. McCall University of Illinois 22 March 2010 http://bjm.scs.uiuc.edu
2
Overview H 3 + in interstellar clouds Symmetry, Nuclear Spin, and H 3 + H 3 + + H 2 H 2 + H 3 + Experimental Details Results
3
Periodic Table
4
Astronomer’s Periodic Table
5
H 3 + : Why is it important? Simplest polyatomic species– theoretical benchmark Dominant ionic species in hydrogenic plasma Low proton affinity Cornerstone of gas- phase ion-molecule chemistry N O2O2 H2H2 O N2N2 CO 2 CH 4 OH C C2C2 H2OH2O H 2 CO CH NH 2 Si NH 3 CO Proton Affinity (eV)
6
H 3 + Chemistry Formation: 1. H 2 + cosmic ray H 2 + + e - (slow) 2. H 2 + + H 2 H 3 + + H (fast) Destruction: H 3 + + e - H 2 + H or 3H (diffuse clouds) H 3 + + CO HCO + + H 2 (dense clouds)
7
Astronomical Spectroscopy of H 3 + R(1,0) 36685 Å R(1,1) u 36681 Å B. J. McCall Ph.D. Thesis, University of Chicago (2001).
8
B. J. McCall, T. R. Geballe, K. H. Hinkle, and T. Oka ApJ (1999), 522, 338-348. H 3 + Spectroscopy N. Indriolo Private Communication
9
H 3 + Temperature Observed R(1,0) and R(1,1) u lines T ex T ex = 30 K in both diffuse and dense clouds T 01 (H 2 J=0,1 states) = 60 K in diffuse clouds Dense cloud temperatures: 10-30 K
10
Overview H 3 + in interstellar clouds Symmetry, Nuclear Spin, and H 3 + H 3 + + H 2 H 2 + H 3 + Experimental Details Results
11
H 3 + Symmetry S3*S3* E(12)(123)E*E* (12) * (123) * A1+A1+ 111111 A2+A2+ 111 1 E+E+ 20 20 A1-A1- 111 A2-A2- 1 1 1 E-E- 20 -201 E+E+ A1+A1+ para ortho
12
Nuclear Spin Constraints on Rotational States
13
Ortho and para-H 3 + are distinct species T ex ≠ temperature n (1,0) /n (1,1) related to ortho/para ratio “Low” T ex overabundance of para-H 3 + H 3 + + H 2 H 2 + H 3 + reaction allows H 3 + population to transfer between ortho and para spin configurations
14
Overview H 3 + in interstellar clouds Symmetry, Nuclear Spin, and H 3 + H 3 + + H 2 H 2 + H 3 + › Reaction Outcomes › High Temperature › Low Temperature Experimental Details Results
15
H 3 + + H 2 H 2 + H 3 + “identity” “hop” “exchange” H5+H5+ 1 3 6 not well understood: branching ratio α = hop/exchange quantum effects at low T simplest bimolecular reaction involving a polyatomic most common bimolecular reaction in the universe: ~10 52 s -1
16
Nuclear Spin Statistical Weights 1/2 0 = 1/2 3/2 0 = 3/2 + → + + + para ortho H3+H3+ H2H2 Typeo-H 3 + p-H 3 + paraorthohop2/31/3 paraorthoexch.1/32/3 para hop01 para exch.1/32/3 p 3 ≡ [p-H 3 + ]/[total H 3 + ] p 2 ≡ [p-H 2 ]/[total H 2 ] ≡ k hop /k exchange M. Cordonnier et al., J. Chem Phys (2000), 113, 3181. T. Oka, J. Mol. Spec. (2004), 228, 635.
17
High Temperature Model
18
Key Features Linear p 3 = 0.5 w/n-H 2 M. Cordonnier et al., J. Chem Phys (2000), 113, 3181.
19
Need for Another Model? p-H 2 ; J = 0 o-H 2 ; J = 1 ΔE = 170 K K. Park and J. Light, J. Chem. Phys. (2007), 126, 044305. Dynamics of Floppy Molecules Session 123N Moscone Center Thursday 1:30 pm Pub #705 Experimental measurements of the H 3 + + H 2 → (H 5 + )* → H 2 + H 3 + reaction Kyle N Crabtree, Brian A Tom, Carrie A Kauffman, Brett A McGuire, Benjamin J McCall
20
Low Temperature Model
21
Key Features Curvature p 3 not necessarily 0.5 with n-H 2
22
Model Limitations HT model only considers conservation of angular momentum; LT model adds energetic considerations Neither model takes into account the H 5 + potential energy surface LT model only uses rate coefficients from (1,0) and (1,1) states, not all ortho and para states
23
Outlook
24
Overview H 3 + in interstellar clouds Symmetry, Nuclear Spin, and H 3 + H 3 + + H 2 H 2 + H 3 + Experimental Details › Difference Frequency Generation Laser › Para-H 2 Production › Supersonic Ion Source/cw-CRDS › Hollow Cathode/Direct Absorption Results
25
Difference Frequency Generation Laser (DFG) Spectral Range: 2.2-4.8 μm Output Power: 500-700 μW
26
Para-H 2 Production 15 K >99.9% purity B. A. Tom, S. Bhasker, Y. Miyamoto, T. Momose, and B. J. McCall Rev. Sci. Inst (2009), 80, 016108 Ferric Oxide catalyst
27
Hollow Cathode Cell T = 130 – 300 K
28
Piezo Pulsed Supersonic Expansion Ion Source Piezo disc Plunger T < 130 K
29
Overview H 3 + in interstellar clouds Symmetry, Nuclear Spin, and H 3 + H 3 + + H 2 H 2 + H 3 + Experimental Details Results
30
Hollow Cathode: T=310 K
31
Hollow Cathode: T=180 K
32
Hollow Cathode: T=130 K
33
Supersonic Expansion: T=110 K
34
Low Temperature Model
35
Diffuse Cloud Observations Survey of diffuse cloud sightlines with known H 2 (1)/(0) measurements H 3 + measured in: › ζ-Per UKIRT (CGS4) › X-Per UKIRT (CGS4) › HD 154368 Gemini South (Phoenix) More data from VLT (CRIRES) and Keck (NIRSPEC) UKIRT Gemini South
36
Diffuse Cloud Observations
37
Conclusions Observed (1,1):(1,0) ratio ortho:para- H 3 + ratio, not temperature Likely represents steady state of H 3 + + H 2 reaction, not thermalization Decrease of with temperature H 3 + ortho:para ratio possibly allows determination of H 2 ortho:para ratio in dense clouds where H 2 not observable
38
Acknowledgements McCall Research Group Kisam Park Funding:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.