Presentation is loading. Please wait.

Presentation is loading. Please wait.

High Energy Propulsion Brice Cassenti University of Connecticut.

Similar presentations


Presentation on theme: "High Energy Propulsion Brice Cassenti University of Connecticut."— Presentation transcript:

1 High Energy Propulsion Brice Cassenti University of Connecticut

2 High Energy Propulsion Fusion Annihilation Photon

3 Fusion Energy Binding energy Reactions Propulsion

4 Binding Energy

5 Some Fusion Reactions

6 Nuclear Reactions DT Fusion Reaction Uranium Fission Lithium Fission

7 Fusion Reactions The DT reaction And Lithium fission reaction Are equivalent to

8 Reaction Cross-Section

9 Reaction Kinetics Rate - Parameter - Velocity depends on temperature – – k is Boltzmann’s constant

10 Rate vs. Temperature http://www.google.comhttp://www.google.com “nuclear fusion reactor pictures”

11 Thermonuclear Weapon

12 Magnetic Confinement Fusion Power Tokamak http://upload.wikimedia.org/wikipedia/commons/4/4b/Tokamak_fields_lg.png

13 Magnetic Confinement Fusion Power Mirror http://www.google.comhttp://www.google.com “magnetic mirror nuclear fusion reactor pictures”

14 Inertial Confinement Fusion Power

15 Fusion Rockets Magnetic Mirror – End fields unequal: preferential exhaust Tokamak – Power to expel high speed plasma Inertial Confinement – Magnetic nozzles align pellet products

16 Orion

17 Daedalus Study British Interplanetary Society From Nicolson “The Road to the Stars”

18 Daedalus http://www.grc.nasa.gov/WWW/PAO/images/warp/warp44.gif

19 Medusa http://en.wikipedia.org/wiki/File:MedusaNuclearPropulsionOperatingSequenceDrawing.png

20 Medusa Specific Impulse: 100,000-500,000 http://en.wikipedia.org/wiki/File:MedusaNuclearPropulsionOperatingSequenceDrawing.png

21 Matter-Antimatter Annihilation  Positron-Electron Annihilation

22 Antiproton-Uranium Nucleus Annihilation + p p n

23 Courtesy of G. Smith

24 Pellet Ignition

25 Tritium Fuel Considerations Tritium is naturally radioactive – Beta decay – Half-life ~12 years Tritium requires cryogenic storage Lithium-6 is not radioactive Lithium-6 does not require cryogenic storage

26 Pellet Construction

27 Hybrid Fusion-Fission Nuclear Pulse Propulsion Use of Li6 – Reduces tritium handling problems – Decreases specific impulse System can be developed in a two step process – Use fusion to boost the specific impulse of a pulse fission rocket – Evolve to a full hybrid system

28 Typical Pellet Geometry Core radius0.05 mm Fuel Radius1.00 cm Tungsten Shell Thickness0.10 mm Antiproton Beam Radius0.10  m Uranium Hemisphere Radius0.30 mm

29 Typical Pellet Performance Antiproton Pulse2x10 13 for 30 ns Maximum Field24 MG Pellet Mass3.5 g Specific Impulse –600,000 s for 100% fusion –200,000 s for 10% fusion – 3,000 s for contained fusion

30 Exotic Propulsion Alternatives

31 Sanger Electron-Positron Annihilation Rocket By G. Matloff

32 Proton-Antiproton Reaction

33

34

35

36 +

37 +

38 Pion Rocket By R. Forward Isp: 10,000,000 sec

39 References Kammash, T., (editor), Fusion Energy in Space Propulsion, Volume 167 Progress in Astronautice and Aeronautics, American Institute of Aeronautics and Astronautics, Washington, DC,, 1995. Kammash, T, Fusion Reactor Physics, Ann Arbor Physics, Inc. Ann Arbor, MI, 1976. Manheimer, W.M., An Introduction to Trapped-Particle Instability in Tokamaks, Energy Research and Development Administration, Washington, DC, 1972. Miley, G.K., Fusion Energy Conversion, American Nuclear Society and U.S. Energy research and Development Administration, Chicago, 1976. Miyamoto, K., Plasma Physics for Nuclear Fusion, The MIT Press, Cambridge, MA, 1987. Vedenov, A.A., Theory of Turbulent Plasma, National Aeronautics and Space Administration, National Science Foundation, and Isreal Program for Scientific Translations, Jerusalem, 1966.


Download ppt "High Energy Propulsion Brice Cassenti University of Connecticut."

Similar presentations


Ads by Google