Download presentation
Presentation is loading. Please wait.
Published bySilas Malone Modified over 9 years ago
1
High Energy Propulsion Brice Cassenti University of Connecticut
2
High Energy Propulsion Fusion Annihilation Photon
3
Fusion Energy Binding energy Reactions Propulsion
4
Binding Energy
5
Some Fusion Reactions
6
Nuclear Reactions DT Fusion Reaction Uranium Fission Lithium Fission
7
Fusion Reactions The DT reaction And Lithium fission reaction Are equivalent to
8
Reaction Cross-Section
9
Reaction Kinetics Rate - Parameter - Velocity depends on temperature – – k is Boltzmann’s constant
10
Rate vs. Temperature http://www.google.comhttp://www.google.com “nuclear fusion reactor pictures”
11
Thermonuclear Weapon
12
Magnetic Confinement Fusion Power Tokamak http://upload.wikimedia.org/wikipedia/commons/4/4b/Tokamak_fields_lg.png
13
Magnetic Confinement Fusion Power Mirror http://www.google.comhttp://www.google.com “magnetic mirror nuclear fusion reactor pictures”
14
Inertial Confinement Fusion Power
15
Fusion Rockets Magnetic Mirror – End fields unequal: preferential exhaust Tokamak – Power to expel high speed plasma Inertial Confinement – Magnetic nozzles align pellet products
16
Orion
17
Daedalus Study British Interplanetary Society From Nicolson “The Road to the Stars”
18
Daedalus http://www.grc.nasa.gov/WWW/PAO/images/warp/warp44.gif
19
Medusa http://en.wikipedia.org/wiki/File:MedusaNuclearPropulsionOperatingSequenceDrawing.png
20
Medusa Specific Impulse: 100,000-500,000 http://en.wikipedia.org/wiki/File:MedusaNuclearPropulsionOperatingSequenceDrawing.png
21
Matter-Antimatter Annihilation Positron-Electron Annihilation
22
Antiproton-Uranium Nucleus Annihilation + p p n
23
Courtesy of G. Smith
24
Pellet Ignition
25
Tritium Fuel Considerations Tritium is naturally radioactive – Beta decay – Half-life ~12 years Tritium requires cryogenic storage Lithium-6 is not radioactive Lithium-6 does not require cryogenic storage
26
Pellet Construction
27
Hybrid Fusion-Fission Nuclear Pulse Propulsion Use of Li6 – Reduces tritium handling problems – Decreases specific impulse System can be developed in a two step process – Use fusion to boost the specific impulse of a pulse fission rocket – Evolve to a full hybrid system
28
Typical Pellet Geometry Core radius0.05 mm Fuel Radius1.00 cm Tungsten Shell Thickness0.10 mm Antiproton Beam Radius0.10 m Uranium Hemisphere Radius0.30 mm
29
Typical Pellet Performance Antiproton Pulse2x10 13 for 30 ns Maximum Field24 MG Pellet Mass3.5 g Specific Impulse –600,000 s for 100% fusion –200,000 s for 10% fusion – 3,000 s for contained fusion
30
Exotic Propulsion Alternatives
31
Sanger Electron-Positron Annihilation Rocket By G. Matloff
32
Proton-Antiproton Reaction
36
+
37
+
38
Pion Rocket By R. Forward Isp: 10,000,000 sec
39
References Kammash, T., (editor), Fusion Energy in Space Propulsion, Volume 167 Progress in Astronautice and Aeronautics, American Institute of Aeronautics and Astronautics, Washington, DC,, 1995. Kammash, T, Fusion Reactor Physics, Ann Arbor Physics, Inc. Ann Arbor, MI, 1976. Manheimer, W.M., An Introduction to Trapped-Particle Instability in Tokamaks, Energy Research and Development Administration, Washington, DC, 1972. Miley, G.K., Fusion Energy Conversion, American Nuclear Society and U.S. Energy research and Development Administration, Chicago, 1976. Miyamoto, K., Plasma Physics for Nuclear Fusion, The MIT Press, Cambridge, MA, 1987. Vedenov, A.A., Theory of Turbulent Plasma, National Aeronautics and Space Administration, National Science Foundation, and Isreal Program for Scientific Translations, Jerusalem, 1966.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.