Download presentation
Presentation is loading. Please wait.
1
Embodied Compositional Semantics Ellen Dodge edodge@berkeley.edu
2
Questions What is the nature of compositionality in the Neural Theory of Language? How can it be best represented using Embodied Construction Grammar?
3
Examples He bit the apple He was bitten (by a toddler) He bit into the apple His white teeth bit into the apple. He shattered the window The window was shattered The window shattered
4
Outline Compositionality Neural Theory of Language and ECG –Assumptions –Overview Examples: –Representation of constructions and meaning –Simulation Concluding Remarks
5
Compositionality Put the parts together to create the meaning of the whole.
6
Compositionality Put the parts together to create the meaning of the whole. Questions: –what is the nature of the parts? –How and why do they combine with one another? –What meaning is associated with this composition?
7
Short answers Parts = constructions, schemas Combination = binding, unification Meaning of the whole = simulation of unified parts
8
Constructions Construction Grammar Constructions are form-meaning pairings A given utterance instantiates many different constructions Embodied Construction Grammar Construction meaning is represented using schemas Meaning is embodied
9
Key assumptions of NTL Language understanding is simulation Simulation involves activation of neural structures
10
Comments Language understanding Understanding process is dynamic “Redundancy” is okay
11
Conceptual structure Embodied Schematic (Potentially) language-independent Highly interconnected
12
Simulation parameters Constructions unify to create semantic specification that supports a simulation Two types of simulation parameters for event descriptions: –Event content –Event construal
13
Putting the parts together Bindings Unification
14
“Pre-existing” structure Cxn schema Cxn schema
15
Unification Cxn schema Cxn schema
16
Summary Parts = constructions, schemas Combination = binding, unification Meaning of the whole = simulation of the combined parts
17
First example He bit the apple.
18
schema MotorControl subcase of Process roles Actor ↔ Protagonist Effector Effort Routine constraints Actor ← animate Schemas
19
schema ForceApplication subcase of MotorControl evokes ForceTransfer as FT roles Actor ↔ FT.Supplier ↔ Protagonist Acted Upon↔ FT.Recipient Effector Routine Effort ↔ FT.Force.amount schema ForceTransfer evokes Conact as C roles Supplier ↔ C.entity1 Recipient ↔ C.entity2 Force schema MotorControl subcase of Process roles Actor ↔ Protagonist Effector Effort Routine constraints Actor ← animate schema Contact subcase of SpatialRelation roles Entity1 : entity Entity2 : entity
20
Schema networks MotorControl Motion SPG Effector Motion Effector MotionPath ForceTransfer ForceApplication Contact SpatiallyDirectedAction CauseEffect Contact Agentive Impact SelfMotion Path MotionPath
21
Construction BITE1 subcase of Verb form: bite meaning: ForceApplication constraints: Effector ← teeth Routine ← bite // close mouth Verb Constructions schema ForceApplication subcase of MotorControl evokes ForceTransfer as FT roles Actor ↔ FT.Supplier ↔ Protagonist Acted Upon ↔ FT.Recipient Effector Routine Effort ↔ FT.Force.amount
22
Verb Constructions schema ForceApplication subcase of MotorControl schema Agentive Impact subcase of ForceApplication cxn BITE meaning: ForceApplication schema MotorControl cxn GRASP meaning: ForceApplication cxn PUSH meaning: ForceApplication cxn SLAP meaning: AgentiveImpact cxn KICK meaning: AgentiveImpact cxn HIT meaning: AgentiveImpact
23
Argument Structure Construction construction ActiveTransitiveAction2 subcase of VP constituents: V : verb NP: NP form constraints: V F before NP F meaning: CauseEffect evokes; EventDescriptor as ED; ForceApplication as FA constraints: {Self m ↔ ED.EventType} {V m ↔ ED.ProfiledProcess} Causer ↔ ED.ProfiledParticipant FA ↔ V m Causer ↔ FA.Actor Affected ↔ FA.ActedUpon Affected ↔ NP m
24
Argument Structure Construction construction ActiveTransitiveAction2 subcase of VP constituents: V : verb NP: NP form constraints: V F before NP F meaning: CauseEffect evokes; EventDescriptor as ED; ForceApplication as FA constraints: {Self m ↔ ED.EventType} {V m ↔ ED.ProfiledProcess} Causer ↔ ED.ProfiledParticipant FA ↔ V m Causer ↔ FA.Actor Affected ↔ FA.ActedUpon Affected ↔ NP m
25
CauseEffect schema schema CauseEffect subcase of ForceApplication; Process roles Causer ↔ Actor Affected ↔ ActedUpon ↔ Process.Protagonist Instrument ↔ Effector
26
MotorControl Motion SPG Effector Motion Effector MotionPath ForceTransfer ForceApplication Contact SpatiallyDirectedAction CauseEffect Contact SelfMotion Path MotionPath Agentive Impact Process Schema Network
27
Argument Structure Construction construction ActiveTransitiveAction2 subcase of VP constituents: V : verb NP: NP form constraints: V F before NP F meaning: CauseEffect evokes: EventDescriptor as ED; ForceApplication as FA constraints: {Self m ↔ ED.EventType} {V m ↔ ED.ProfiledProcess} Causer ↔ ED.ProfiledParticipant FA ↔ V m Causer ↔ FA.Actor Affected ↔ FA.ActedUpon Affected ↔ NP m
28
MotorControl Motion SPG Effector Motion Effector MotionPath ForceTransfer ForceApplication Contact SpatiallyDirectedAction CauseEffect Contact SelfMotion Path MotionPath Agentive Impact Process Schema Network
29
Important points Compositionality does not require that each component contain different information. Shared semantic structure is not viewed as an undesirable redundancy
30
Argument Structure Construction construction ActiveTransitiveAction2 subcase of VP constituents: V : verb NP: NP form constraints: V F before NP F meaning: CauseEffect evokes; EventDescriptor as ED ; ForceApplication as FA constraints: {Self m ↔ ED.EventType} {V m ↔ ED.ProfiledProcess} Causer ↔ ED.ProfiledParticipant FA ↔ V m Causer ↔ FA.Actor Affected ↔ FA.ActedUpon Affected ↔ NP m
31
schema EventDescriptor roles EventType: Process ProfiledProcess: Process ProfiledParticipant: Entity ProfiledState(s): State SpatialSetting TemporalSetting Event Descriptor schema
32
Argument Structure Construction Construction ActiveTransitiveAction2 subcase of VP constituents: V : verb NP: NP form constraints: V F before NP F meaning: CauseEffect evokes; EventDescriptor as ED ; ForceApplication as FA constraints: {Self m ↔ ED.EventType} {V m ↔ ED.ProfiledProcess} Causer ↔ ED.ProfiledParticipant FA ↔ V m Causer ↔ FA.Actor Affected ↔ FA.ActedUpon Affected ↔ NP m
33
construction NPVP1 constituents: Subj: NP VP : VP form Constraints Subj f before VP f meaning: EventDescriptor ProfiledParticipant ↔ Subj m Bindings with other cxns construction ActiveTransitiveAction2 subcase of VP constituents: V ; NP form: V F before NP F meaning: CauseEffect evokes; EventDescriptor as ED constraints: {Self m ↔ ED.EventType} {V m ↔ ED.ProfiledProcess} Causer ↔ ED.ProfiledParticipant Affected ↔ NP m
34
Construction NPVP1 constituents: Subj: NP VP : VP form constraints Subj f before VP f meaning: EventDescriptor ProfiledParticipant ↔ Subj m Bindings with other cxns construction ActiveTransitiveAction2 subcase of VP constituents: V ; NP form: V F before NP F meaning: CauseEffect evokes; EventDescriptor as ED constraints: {Self m ↔ ED.EventType} {V m ↔ ED.ProfiledProcess} Causer ↔ ED.ProfiledParticipant Affected ↔ NP m schema EventDescriptor roles EventType ProfiledProcess ProfiledParticipant ProfiledState(s) SpatialSetting TemporalSetting
35
Bindings with other cxns schema EventDescriptor roles EventType ProfiledProcess ProfiledParticipant ProfiledState(s) SpatialSetting TemporalSetting construction NPVP1 constituents: Subj: NP VP : VP form Constraints Subj f before VP f meaning: EventDescriptor ProfiledParticipant ↔ Subj m construction ActiveTransitiveAction2 subcase of VP constituents: V ; NP form: V F before NP F meaning: CauseEffect evokes; EventDescriptor as ED constraints: {Self m ↔ ED.EventType} {V m ↔ ED.ProfiledProcess} Causer ↔ ED.ProfiledParticipant Affected ↔ NP m
36
Unification CauseEffect causer affected ForceApplication actor actedupon EventDescriptor EventType ProfiledProcess ProfiledParticipant BITE TransitiveAction2 HE NP1 NPVP1 THEAPPLE NP2 ReferentDescriptor ReferentDescriptor MeaningConstructions
37
Unification CauseEffect causer affected ForceApplication actor actedupon EventDescriptor EventType ProfiledProcess ProfiledParticipant BITE TransitiveAction2 HE NP1 NPVP1 THEAPPLE NP2 ReferentDescriptor ReferentDescriptor resolved referent MeaningConstructions
38
Unification CauseEffect causer affected ForceApplication actor actedupon EventDescriptor eventtype ProfiledProcess ProfiledParticipant BITE TransitiveAction2 Verb HE NP1 NPVP1 THEAPPLE NP2 ReferentDescriptor ReferentDescriptor resolved referent MeaningConstructions
39
Unification CauseEffect causer affected ForceApplication actor actedupon EventDescriptor eventtype ProfiledProcess ProfiledParticipant BITE TransitiveAction2 HE NP1 NPVP1 subj THEAPPLE NP2 ReferentDescriptor ReferentDescriptor MeaningConstructions
40
Unification CauseEffect causer affected ForceApplication actor actedupon EventDescriptor eventtype ProfiledProcess ProfiledParticipant BITE TransitiveAction2 NP HE NP1 NPVP1 THEAPPLE NP2 ReferentDescriptor ReferentDescriptor MeaningConstructions
41
Semantic Specification He bit the apple EventDescriptor eventtype ProfiledProcess ProfiledParticipant CauseEffect causer affected ForceApplication actor actedupon routine bite effector teeth RD55 category Person Apple RD27 category
42
Process Simulation - He bit the apple CauseEffect ForceApplication Protagonist = Causer ↔ Actor Protagonist = Affected ↔ ActedUpon
43
Process Simulation - He bit the apple CauseEffect ForceApplication Protagonist = Causer ↔ Actor Protagonist = Affected ↔ ActedUpon
44
Passive voice He was bitten (by a toddler)
45
Argument Structure Construction He was bitten (by a toddler) construction PassiveTransitiveAction2 subcase of VP constituents: V : PassiveVerb (PP: agentivePP) form constraints: V F before PP F meaning: CauseEffectAction evokes; EventDescriptor as ED; ForceApplication as FA constraints: {Self m ↔ ED.EventType} {V m ↔ ED.ProfiledProcess} Affected ↔ ED.ProfiledParticipant FA ↔ V m Causer ↔ FA.Actor Affected ↔ FA.ActedUpon Causer ↔ PP.NP m
46
Semantic Specification He was bitten (by a toddler) EventDescriptor eventtype ProfiledProcess ProfiledParticipant CauseEffect causer affected ForceApplication actor actedupon routine bite effector teeth RD48 category Person Person RD27 category
47
Effect = Process Simulation - He was bitten (by a toddler) CauseEffect Action = Bite Protagonist = Causer ↔ Actor Protagonist = Affected ↔ ActedUpon
48
Variations on a theme He shattered the window The window was shattered The window shattered
49
Construction SHATTER1 subcase of Verb form: shatter meaning: StateChange constraints: Initial :: Undergoer.state ← whole Final :: Undergoer.state ← shards Verb Construction -- shatter schema StateChange subcase of Process roles Undergoer ↔ Protagonist
50
Argument Structure Construction He shattered the window construction ActiveTransitiveAction3 subcase of VP constituents: V : verb NP: NP form constraints: V F before NP F meaning: CauseEffect evokes: EventDescriptor as ED; StateChange as SC constraints: {Self m ↔ ED.EventType} {V m ↔ ED.ProfiledProcess} Causer ↔ ED.ProfiledParticipant SC ↔ V m Affected ↔ SC.Undergoer Affected ↔ NP m
51
Semantic Specification He shattered the window EventDescriptor eventtype ProfiledProcess ProfiledParticipant CauseEffect causer affected StateChange Undergoer state “wholeness” RD189 category Person Window RD27 category
52
Process Simulation - He shattered the window CauseEffect Action Protagonist = Causer Protagonist = Affected ↔ Undergoer
53
Argument Structure Construction The window was shattered construction PassiveTransitiveAction3 subcase of VP constituents: V : PassiveVerb (PP: agentivePP) form constraints: V F before NP F meaning: CauseEffect evokes: EventDescriptor as ED; StateChange as SC constraints: {Self m ↔ ED.EventType} {V m ↔ ED.ProfiledProcess} Affected ↔ ED.ProfiledParticipant SC ↔ V m Affected ↔ SC.Undergoer Causer ↔ PP.NP m
54
Semantic Specification The window was shattered EventDescriptor eventtype ProfiledProcess ProfiledParticipant CauseEffect causer affected StateChange Undergoer state “wholeness” RD175 category Window
55
Process Simulation - The window was shattered CauseEffect Action Protagonist = Causer Protagonist = Affected ↔ Undergoer
56
Argument Structure Construction The window shattered construction ActiveIntransitiveAction1 subcase of VP constituents: V : verb form meaning: Process evokes: EventDescriptor as ED; StateChange as SC constraints: {Self m ↔ ED.EventType} {V m ↔ ED.ProfiledProcess} Protagonist ↔ ED.ProfiledParticipant SC ↔ V m Protagonist ↔ SC.Undergoer
57
Semantic Specification The window shattered EventDescriptor eventtype ProfiledProcess ProfiledParticipant Process protagonist StateChange Undergoer state “wholeness” RD177 category Window
58
Process Simulation - The window shattered Process Protagonist = Undergoer
59
Some more variations on a theme He bit the apple He bit into the apple His white teeth bit into the apple.
60
Argument Structure Construction He bit into the apple construction ActiveEffectorMotionPath2 subcase of VP constituents: V : verb PP: Spatial-PP form constraints: V F before PP F meaning: EffectorMotionPath evokes; EventDescriptor as ED; ForceApplication as FA constraints: {Self m ↔ ED.EventType} {V m ↔ ED.ProfiledProcess} Actor ↔ ED.ProfiledParticipant FA ↔ V m Actor ↔ FA.Actor Effector ↔ FA.Effector // INI Target ↔ FA.ActedUpon SPG ↔ PP m Target ↔ PP m.Prep.LM
61
Schema schema EffectorMotionPath subcase of EffectorMotion subcase of SPG // or evokes SPG roles Actor ↔ MotorControl.protagonist Effector ↔ SPG.Tr ↔ M.Mover ↔ Motion.protagonist Target ↔ SPG.Lm
62
MotorControl Motion SPG Effector Motion Effector MotionPath ForceTransfer ForceApplication Contact SpatiallyDirectedAction CauseEffect Contact SelfMotion Path MotionPath Agentive Impact Process Schema Network
63
Argument Structure Construction He bit into the apple construction ActiveEffectorMotionPath2 subcase of VP constituents: V : verb PP: Spatial-PP form constraints: V F before PP F meaning: EffectorMotionPath evokes: EventDescriptor as ED; ForceApplication as FA constraints: {Self m ↔ ED.EventType} {V m ↔ ED.ProfiledProcess} Actor ↔ ED.ProfiledParticipant FA ↔ V m Actor ↔ FA.Actor Effector ↔ FA.Effector // INI Target ↔ FA.ActedUpon SPG ↔ PP m Target ↔ PP m.Prep.LM
64
EffectorMotionPath Action SourcePathGoal Effector Motion Protagonist = Actor Protagonist = Effector
65
Argument Structure Construction He bit into the apple construction ActiveEffectorMotionPath2 subcase of VP constituents: V : verb PP: Spatial-PP form constraints: V F before PP F meaning: EffectorMotionPath evokes; EventDescriptor as ED; ForceApplication as FA constraints: {Self m ↔ ED.EventType} {V m ↔ ED.ProfiledProcess} Actor ↔ ED.ProfiledParticipant FA ↔ V m Actor ↔ FA.Actor Effector ↔ FA.Effector // INI Target ↔ FA.ActedUpon SPG ↔ PP m Target ↔ PP m.Prep.LM
66
Simulation: He bit into the apple Action SourcePathGoal Effector Motion Protagonist = Actor Protagonist = Effector
67
Argument Structure Construction His white teeth bit into the apple construction ActiveEffectorMotionPath3 subcase of VP constituents: V : verb PP: Spatial-PP form constraints: V F before PP F meaning: EffectorMotionPath evokes; EventDescriptor as ED; ForceApplication as FA constraints: {Self m ↔ ED.EventType} {V m ↔ ED.ProfiledProcess} Effector ↔ ED.ProfiledParticipant FA ↔ V m Actor ↔ FA.Actor // INI Effector ↔ FA.Effector Target ↔ FA.ActedUpon SPG ↔ PP m Target ↔ PP m.Prep.LM
68
Simulation: His white teeth bit into the apple Action SourcePathGoal Effector Motion Protagonist = Actor Protagonist = Effector
69
Non-agentive biting He landed on his feet, hitting the narrow pavement outside the yard with such jarring impact that his teeth bit into the edge of his tongue. [BNC] The studs bit into Trent's hand. [BNC] His chest burned savagely as the ropes bit into his skin. [BNC]
70
MotorControl Motion SPG Effector Motion Effector MotionPath ForceTransfer ForceApplication Contact SpatiallyDirectedAction CauseEffect Contact SelfMotion Path MotionPath Agentive Impact Process Schema Network
71
Simulation: His teeth bit his tongue SourcePathGoal Motion Protagonist = Mover
72
Summary Small set of constructions and schemas Composed in different ways Unification produces specification of parameters of simulation Sentence understanding is simulation Different meanings = different simulations
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.