Download presentation
Presentation is loading. Please wait.
Published byKelley Lyons Modified over 9 years ago
1
EpiS3: a semantically interoperable social network for syndromic surveillance and disease control Luciana Tricai Cavalini and Timothy Wayne Cook National Institute of Science and Technology – Medicine Assisted by Scientific Computing
2
Summary The problem The current solution Remaining challenges A new approach Implementation Future steps
3
THE PROBLEM Syndromic Surveillance:
4
First cases detected Index case Problem 1: Detecting Cases
5
Fever? Bleeding? Jaundice?
6
Problem 2: Decision Making
10
THE CURRENT SOLUTION Syndromic Surveillance:
11
Current solution: Standardize the data model
14
The Current Solution: Issues Top-down data models –Risk of inaccurate or incomplete data Hospital/clinic centered applications –No records from uncovered populations Incipient Decision Support Systems (DSS) –Mostly academic projects in internal medicine
15
REMAINING ISSUES Syndromic Surveillance:
16
Problem is: Accuracy or Utility?
18
Remaining Questions How to collect data in the most opportune moment? –At the point of care –In the household How to get data with proper… –...accuracy... –...granularity......that will allow implementation of useful DSS for syndromic surveillance?
19
Dr. Cool Your patient: Jane Updated her problem list on Apr 29, 2014 5:33pm - Fever: YES - Bleeding: YES - Location: Nose Suspicious case of Acute Febrile Hemorrhagic Syndrome What to do How to get......without creating another data silo?
20
A NEW APPROACH Syndromic Surveillance:
21
Fever? Bleeding? Jaundice?
22
Harmonization Multilevel Model-Driven Approach Minimalistic, XML-based MMD technology Minimalistic, XML-based MMD technology MLHIM-based implementation MedWeb 3.0 Plugin Suite AFJHS app Rabies prophylaxis app Hospital infection control app Bioterrorism app Poisonous animals app And so on…
23
IMPLEMENTATION Epidemiological Surveillance Support System (EpiS3):
24
Acute Febrile Jaundice Hemorrhagic Syndrome (AFJHS) App > 1 y/o Fever 0-3 wks Jaundice > 1 y/o Fever 0-3 wks Jaundice AFJS > 1 y/o Fever 0-3 wks Bleeding signs > 1 y/o Fever 0-3 wks Bleeding signs AFHS > 1 y/o Fever 0-3 wks Jaundice and Bleeding > 1 y/o Fever 0-3 wks Jaundice and Bleeding AFJHS Malaria blood smear test Positive Negative Treat malaria Evaluate current epidemiological profile of the territory Hepatitis Yellow Fever Leptospirosis Sepsis Typhoid Fever Hepatitis Yellow Fever Leptospirosis Sepsis Typhoid Fever AFJS Dengue Sepsis Meningococcemia Typhoid Fever Hantavirus Other Arbovirosis Dengue Sepsis Meningococcemia Typhoid Fever Hantavirus Other Arbovirosis AFHS Hepatitis Yellow Fever Leptospirosis Sepsis Typhoid Fever Hepatitis Yellow Fever Leptospirosis Sepsis Typhoid Fever AFJHS
25
Concept Constraint Definition Reference Model
26
Concept Constraint Definition Generator (CCD-Gen) www.ccdgen.com
27
CCD Library on CCD-Gen www.ccdgen.com/ccdlib
28
AFJHS App Form on CCD-Gen
29
AFJHS App: CCD Schema
30
AFJHS App: Sample Data Instances AFHS with spontaneous bleeding
31
AFJHS App: Sample Data Instances AFHS with tourniquet test positive
32
AFJHS App: Sample Data Instances AFJS with mucosa jaundice
33
Already Implemented: 16 AFJHS simulated cases (all possible classifications) 16 AFJHS simulated cases (all possible classifications) AFHS -Spontaneous bleeding -Tourniquet test + -Spontaneous bleeding -Tourniquet test + AFJHS -Mucosa -Skin -Both -Mucosa -Skin -Both AFJS -Spontaneous + mucosa -Spontaneous + skin -Spontaneous + both -Tourniquet + mucosa -Tourniquet + skin -Tourniquet + both -Malaria -Spontaneous + mucosa -Spontaneous + skin -Spontaneous + both -Tourniquet + mucosa -Tourniquet + skin -Tourniquet + both -Malaria Negative -Age -Fever -Fever duration -No signs -Age -Fever -Fever duration -No signs + a R library that converts the XML data instances into R data frames
35
FUTURE STEPS Epidemiological Surveillance Support System (EpiS3):
36
EpiS3: Future Steps App User Interface –Desktop and mHealth versions DSS Algorithms –Clinical evaluation –Messaging –Reporting EpiInfo Form Builder for MLHIM data
37
Thank you! lutricav@lampada.uerj.br tim@mlhim.org google.com/+MedWeb30
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.