Presentation is loading. Please wait.

Presentation is loading. Please wait.

Bee Wellness Workshop Sponsored by Empire State Honey Producers Association (ESHPA.org) And USDA NIFA Beginning Farmers and Ranchers Development Program,

Similar presentations


Presentation on theme: "Bee Wellness Workshop Sponsored by Empire State Honey Producers Association (ESHPA.org) And USDA NIFA Beginning Farmers and Ranchers Development Program,"— Presentation transcript:

1 Bee Wellness Workshop Sponsored by Empire State Honey Producers Association (ESHPA.org) And USDA NIFA Beginning Farmers and Ranchers Development Program, Grant # 2011-494400-30631

2 Honey Bee Parasites Varroa mite (Varroa destructor) Varroa mites are a serious malady of honey bees. Found nearly everywhere there are honey bees, beekeepers should assume their bees have a varroa mite infestation. These external parasites feed on the hemolymph (blood) of adult bees and capped brood, and create open wounds which increase susceptibility to viruses. Mite on a larva, and mite on a bee with deformed wing virus, DWV.

3 Life history Adult female varroa mite Only mature female mites survive on adult honey bees and can be found on both workers and drones, rarely on queens. Varroa mites are reddish brown, the size of a pin head, and can be seen with the naked eye. Their flat shape allows them to squeeze between overlapping segments of a bee’s abdomen to feed and escape removal by grooming bees and also permits them to move easily in the cells of developing bee brood. Male mites are smaller and light tan in color. Adult males do not feed and are not found outside of brood cells. Varroa mite life cycle Mature female mites move into brood cells just before the cells are capped. After the cells are capped the mites start feeding on the brood. The foundress mites begin laying eggs approximately three days after the cell has been capped. A fertilized female mite lays one unfertilized(male) egg and four to six fertilized (female) eggs. The adult female and its immature offspring feed at a hole pierced in the developing pupae by the foundress mite. Only mature female mites will survive, attached when their host bee emerges as an adult.

4 On average a mite in a worker cell will have 1.2 offspring. In a drone cell, she will have on average 2.2 offspring due to the longer incubation period. More mites per cell are produced in drone brood, and mites select drone brood. New bees and young nurse bees transport the mites as they crawl on the brood comb. Left untreated, varroa mite infestation will severely compromise the health of the hive. Without bees and brood, the mites can only survive a few days. With bees and brood a female can live months. Varroa mite

5 Monitoring Varroa Mite Infestation 1- Examining Drone Brood Quickly assess the presence of varroa mites by examining drone brood —uncap cells, remove and examine white pupae. Individual pupae can be removed using forceps, or many drone pupae can be removed at once using an uncapping fork. Drone brood is often housed between boxes and is broken open when boxes are separated during routine inspections. Always examine exposed brood for mites. 2- Check a known quantity of Nurse Bees Because nurse bees are those most likely to transport mites to brood cells, collecting ½ cup of nurse bees (320 bees) (being careful to exclude the queen!) and counting the mites present gives a good approximation of the level of infestation. use --- sugar shake – or -- ether roll-- 3- Sticky Board Simple, non-invasive and reliable, but requires a second trip to the apiary.

6 What the numbers mean: Alcohol wash, Ether roll, powdered sugar shake: Take the number of mites collected, divide by 3, mutiply by 2 = % of mites # mites/3 X 2= % mite infestation <10% = no treatment, 10-12% = watch, 12% or greater = treat Brood examination (Drone): Uncap ~100 cells in purple eye stage assess general mite load Sticky Boards for 3 days: Divide by 3 for 1 day average Treatment threshold: 12 mites in Spring = treat 23 mites in Fall The following pesticide treatment information came from: www.masterbeekeeper.org/mgmt/pesticides.htm

7 Apistan® (tau-fluvalinate) Dosage: Use one strip for each 5 combs of bees or less in each brood chamber (Langstroth deep frames or equivalent in other sizes). READ LABEL for most complete and current directions. Wear latex gloves when handling strips. Hang strips within two combs of the edge of the bee cluster. If two deep supers are used for the brood nest, hang APISTAN strips in alternate corners of the cluster, in the top and bottom super. For best chemical distribution, use APISTAN when daytime high temperatures are at least 50 ºF. Treat 1-2 times per year. Do not apply when honey supers are on the hive. Treatment dates: in the early spring starting 42-56 days before adding honey supers; and again, right after removing the fall crop Treatment period: 42-56 days Withholding period: none

8 CheckMite+® (coumaphos) Dosage: Use one strip for each 5 combs of bees in each brood chamber (Langstroth deep frames or equivalent in other sizes).. READ LABEL for most complete and current directions. Chemical resistant gloves must be worn when handling strips (nitrile rubber only, NO latex). Remove honey supers before treating. Supers may be replaced 14 days after completing the treatment and removing strips. Hang strips in separate spaces between the combs as near the center of the bee/brood cluster as possible. If two deep brood chambers are used for the brood nest, hang the CheckMite+ strips in both the top and bottom brood chambers. Treat all infested colonies in the apiary. Treat 1-2 times per year. Treatment dates: in the early spring starting 56-59 days before adding honey supers; and again, right after removing the fall crop. Treatment period: 42-45 days Withholding period: 14 days

9 Sucrocide® Dosage: Mix three tablespoons (TBS) concentrate with two gallons of water in a dedicated pump-action hand sprayer. Spray both sides of each comb at a rate of 1.5 oz per comb. Two gallons of prepared mixture should treat about 85 combs. Make a total of three applications at 7-10 day intervals. READ LABEL for most complete and current directions. Chemical resistant gloves must be worn when handling strips (nitrile rubber only, NO latex). Do not apply to winter cluster or when temperature is < 55 °F. Treatment dates: Whenever mites are observed. Treatment period: Make a total of three applications at 7-10 day intervals. Withholding period: None

10 Api-Life VAR® Dosage: Each treatment consists of the application of 3 tablets, with one tablet being applied every 7-10 days. Leave last tablet in place for 12 days, and then remove all residual material. Break each tablet into four equal pieces and place on top bars towards outside corners of hive. This will treat a colony with 8-20 Langstroth frames or equivalent READ LABEL for most complete and current directions. Special personal protection equipment is required. See label before using. Apply when colony is reduced to one or two brood chambers. Place tablets in screen containers to prevent bees from removing material. Do not use during honey flows. Do not harvest honey from brood chambers of colony feed supers. Use when average daily temperature are between 59 °F and 69 °F. DO NOT use when temperature is above 90 °F. DO NOT apply during honey flow or when honey supers are on the hive. Treatment dates: Two treatments per year. Typically in the spring and fall. Treatment period: Total of 26-32 days Withholding period: 1 month

11 Mite-Away Quick StripsTM Dosage: One pad for a single or double brood chamber with 6 - 20 combs of bees. READ LABEL for most complete and current directions. Special personal protection equipment is required. See label before using.Special requirements apply regarding re-entry after treatment. Requires signage with date and time of treatment. Treatment dates: Early spring and/or early fall or whenever needed and when other required conditions can be met. Treatment period: 7 days Withholding period: none

12 Cultural practices for mite control Breaks in brood cycle of bees means a break in the brood cycle for the mites. make splits and/or cage the queen Drone comb removal (Must be on time!) Ventilated bottom boards Mite resistant bees: VSH, Minnesota Hygienic, Russian Local bees which have survived without treatment for several years

13 Field symptoms of a critical infestation Deformed wings Varroa mites can transmit and/or activate some beeviruses. Few of these viruses produce visible symptoms. An exception is deformed wing virus (DWV),which when present in high levels causes developing bees to have malformed wings. When large numbers of bees in a colony have DWV, the colony likely has high varroa populations and immediate intervention to control the varroa population is required

14 Parasitic mite syndrome Parasitic mite syndrome (PMS) is a condition associated with high varroa infestation. It may be caused by a virus. PMS is characterized by a spotty brood pattern and dead brood found in cells that are discolored, turning a yellow brown to dark brown color. Signs can resemble American foulbrood, but dead larvae do not string out, as with American foulbrood, when the ropiness test is preformed. Dead larvae can also resemble European foulbrood and/or sacbrood infections. Both capped and uncapped brood are affected. Other names associated with this condition include snotty brood and cruddy brood.

15 Crawling bees abandoning the hive Another common symptom of a heavy mite infestation is large numbers of bees that are often hairless, greasy looking with extended abdomens, and unable to fly and are thus crawling out of infested hives. These crawling bees may or may not show signs of viral infection, such as deformed wings. Spotty or irregular brood pattern Brood combs in an infested colony have a scattered or irregular pattern of capped and uncapped cells. This may be especially evident in highly hygienic colonies. Sudden summer/fall collapse The collapse of colonies, particularly strong colonies, in the late summer and early fall is a possible symptom of a significant infestation of varroa mites and the diseases associated with these mites.

16 Bee Wellness Classes Hands on training at Paul Busch’s apiary groups limited to 10 people Saturday July 14th 10-11 am Wednesday July 18th 10-11 Monday July 23rd 6-7 pm Advance registration Bring CLEAN bee suit & veil Attendees will receive a copy of the Penn State field guide to bee diseases

17

18 Sampling using sugar shake or ether roll The sugar roll technique is a quick, relatively easy sampling method to check for the presence and number of mites on the worker adults of a colony. Sampling a known quantity of bees To collect an accurate sample (number of bees): 1. Remove a frame covered with bees from the brood nest, taking care not to include the queen. 2. Shake the bees into a plastic tub or cardboard box. 3. Shake the tub to consolidate the bees into the corner. 4. Scoop a half cup of bees using a half-cup measuring cup (a full half-cup measuring cup contains approximately 320 bees). 5. Place the bees into a wide-mouth quart mason jar modified with a mesh hardware cloth top.

19 Rapping a frame in a plastic wash-dish container, then using a cup that holds 0.42 cups to measure 300 adult bees. Using a rectangular cup, marked inside at 0.42 cups, to measure 300 adult bees. Gently run the cup down the backs of the bees, causing them to tumble in.

20 Counting the mites in a sample- Sugar Shake Add two to three tablespoons of powdered (confectioners) sugar to the bees in the jar. Vigorously shake the jar for about 30 seconds to distribute the sugar over the bees. Allow the jar to sit for approximately one minute. Then shake the loose sugar with dislodged mites out of the mason jar through the modified mesh cover onto a flat surface such as a cookie sheet, pie plate, or hive lid. Add more powdered sugar and reshake until no additional mites appear after shaking. Count the number of mites. Spray mites with water to rinse off white sugar and make it easier to count. Let bees crawl back into hive. Treatment is indicated if >7 mites per sample in May or >10 in August.

21 Counting the mites in a sample- Ether Roll This will kill the bees. Work in a well ventilated area. Spray the bees in the jar with 3-4 squirts of ether (engine starting fluid). Cover with the solid lid and shake for 1 minute. Roll the jar slowly. Mark a starting point and rotate the jar, counting the number of bees stuck to the side, top and bottom of the jar. Counting the mites in a sample- Alcohol (washer fluid) wash This will kill the bees. Place ½ cup of bees into a jar with ½ cup washer fluid. Cover with the solid lid and shake vigorously. Pour the bees onto a screen over a white tub and vigorously rinse the mites from the bees into the tub. Count the mites. For both methods, treatment is indicated if > 4-7 mites per sample in May, or > 9-12 in August. Threshold recommendations vary, and are meant as a guide. Use your judgment. If you see greatly increased numbers from a previous check, it is probably wise to treat.

22 Sampling using sticky boards A reliable way of quantifying mite levels is by using a sticky board placed at the bottom of the hive. Sticky boards can be placed beneath screen bottom boards modified for this purpose. Sticky boards can be made using stiff, white poster board and spray cooking oil as the sticky material. The sticky material must be separated from the bees with wire mesh screen elevated about a quarter inch off the sticky surface. If sticky boards are to be placed on solid bottom boards, the bottom board must be cleaned to allow board insertion. Place boards in colonies for a minimum of three days to accurately calculate daily mite drop numbers. Treatment is indicated if >9 mites per day in May or >12 in August.

23 Treatments: Drone Brood Removal for the Management of Varroa Mites An integrated pest management (IPM) approach, drone brood removal uses drone comb to ‘trap’ mites. Varroa prefer drone cells rather than worker cells and become confined in capped drone brood. Thus, if the comb is removed before the drones hatch, many mites are removed as well. 1. Insert the drone brood frame in position 2 or 3 of brood nest. 2. Wait 24 days (eggs laid, drone brood capped, not hatched.) 3. Remove drone brood: - either scrape or cut brood off of frame and discard where bees cannot rob, thus getting the mites on themselves, and return frame to hive for bees to build new - or freeze the frame of drone brood to kill mites and drones, and return to the hive on the next rotation 24 days later, for bees to clean out the cells and re-use. 4. Repeat, until late August, when the drone comb can be placed to the side of the hive for food storage.

24 Honey Bee Parasites Honey bee tracheal mite ( Acarapis woodi) Another mite that can negatively affect honey bees is the honey bee tracheal mite. This internal parasitic mite lives within the tracheae, or breathing tubes, of adult honey bees. The mites pierce the breathing tube walls with their mouthparts and feed on the hemolymph (blood) of the bees. In recent years, it appears that U.S. honey bees have developed resistance to these mites. Life history Tracheal mite life cycle The honey bee tracheal mite is no bigger than a dust speck. The entire life cycle of this mite is spent within the respiratory (tracheal) system of the honey bee, except for brief migratory periods. Female tracheal mites migrate to young adult bees (less than 4 days old). Once in the bees’ tracheae, the mites feed and reproduce. Each female mite lays 5 to 7 eggs, which require three to four days to hatch. Male and female mites develop from egg to adult in 11 to 15. Eggs hatch into six-legged larvae, then molt to a nonfeeding or pharate nymph stage, and finally molt to the adult stage. All stages of the mite may be found in the tracheae of older infected bees. Only adult females emerge from the tracheae through spiracles (openings to the outside). Close contact among bees permits the mites to transfer to uninfested young bees. Bees less than four days old are the most susceptible.

25

26 Mass of bees exiting hive When a colony is near death, large numbers of bees can be seen crawling out of the hive, unable to fly. These bees may display abnormally positioned wings that look disjointed (“K” wings) and may be trembling, symptoms that can result from diseases associated with the tracheal mites. Field diagnosis Infested tracheae A severe infestation can be identified in the field by detaching the head from the thorax to expose the large tracheal trunks in the thorax. This is most easily done with drone bees. Normally, these tracheal tubes are opaque. When infested with a high level of mites, the tubes will be blotchy with patches of brown or black. When infestation is particularly severe, the tubes can be solid black. A light infestation is difficult to detect and can be identified only with the aid of a microscope.

27 Healthy and infested tracheae (under microscope) Positive identification of tracheal mites is best done by dissection and microscopic examination of worker bee thoracic tracheae. The tracheae of uninfested bees are clear and colorless or pale amber in color (healthy). Feeding by the mites damages the walls of the tracheae. Flight muscles in the bee’s thorax also may become atrophied as a result of a severe infestation.

28 Honey Bee Diseases: Brood Diseases American foulbrood American foulbrood (AFB) is an infectious brood disease caused by the spore-forming bacterium Paenibacillus larvae. It is the most widespread and destructive of the brood diseases. Adult bees, while not affected by AFB, do carry the disease. American foulbrood spores are highly resistant to desiccation, heat, and chemical disinfectants. These spores can remain viable for more than seventy years in combs and honey. Life history Punctured, sunken cappings Paenibacillus larvae occur in two forms: vegetative (rodshaped bacterial cells) and spores. Only the spore stage is infectious to honey bees. Larvae less than 2.5 days old become infected by swallowing spores present in their food. Older larvae are not susceptible. The spores germinate into the vegetative stage soon after they enter the larval gut and continue to multiply until larval death. Death typically occurs after the cell has been capped, during the last two days of the larval stage or the first two days of the pupal stage. New spores form after the larva or pupa dies. Symptoms of this disease are only present in larvae that are or were once capped. Adult bees typically puncture but often delay removing diseased larvae.

29 Field symptoms Dead, melted larvae Dead larvae change gradually from a healthy pearly white to a light brown and then to a darker brown. This color change is uniform over the entire body. The infected larvae look melted and lie flat on the bottomside of the cell. The disease has a distinctive odor, but the odor alone is not a reliable symptom foridentification and so should be backed up with lab confirmation.

30

31

32 Treatments:.


Download ppt "Bee Wellness Workshop Sponsored by Empire State Honey Producers Association (ESHPA.org) And USDA NIFA Beginning Farmers and Ranchers Development Program,"

Similar presentations


Ads by Google