Download presentation
Presentation is loading. Please wait.
Published byJoseph Boone Modified over 9 years ago
1
EE 4780 2D Discrete Fourier Transform (DFT)
2
Bahadir K. Gunturk2 2D Discrete Fourier Transform 2D Fourier Transform 2D Discrete Fourier Transform (DFT) 2D DFT is a sampled version of 2D FT.
3
Bahadir K. Gunturk3 2D Discrete Fourier Transform Inverse DFT 2D Discrete Fourier Transform (DFT) where and
4
Bahadir K. Gunturk4 2D Discrete Fourier Transform Inverse DFT It is also possible to define DFT as follows where and
5
Bahadir K. Gunturk5 2D Discrete Fourier Transform Inverse DFT Or, as follows where and
6
Bahadir K. Gunturk6 2D Discrete Fourier Transform
7
Bahadir K. Gunturk7 2D Discrete Fourier Transform
8
Bahadir K. Gunturk8 2D Discrete Fourier Transform
9
Bahadir K. Gunturk9 2D Discrete Fourier Transform
10
Bahadir K. Gunturk10 Periodicity 1 [M,N] point DFT is periodic with period [M,N]
11
Bahadir K. Gunturk11 Periodicity 1 [M,N] point DFT is periodic with period [M,N]
12
Bahadir K. Gunturk12 Convolution Be careful about the convolution property! Length=P Length=Q Length=P+Q-1 For the convolution property to hold, M must be greater than or equal to P+Q-1.
13
Bahadir K. Gunturk13 Convolution Zero padding 4-point DFT (M=4)
14
Bahadir K. Gunturk14 DFT in MATLAB Let f be a 2D image with dimension [M,N], then its 2D DFT can be computed as follows: Df = fft2(f,M,N); fft2 puts the zero-frequency component at the top-left corner. fftshift shifts the zero-frequency component to the center. (Useful for visualization.) Example: f = imread(‘saturn.tif’); f = double(f); Df = fft2(f,size(f,1), size(f,2)); figure; imshow(log(abs(Df)),[ ]); Df2 = fftshift(Df); figure; imshow(log(abs(Df2)),[ ]);
15
Bahadir K. Gunturk15 DFT in MATLAB f Df = fft2(f) After fftshift
16
Bahadir K. Gunturk16 DFT in MATLAB Let’s test convolution property f = [1 1]; g = [2 2 2]; Conv_f_g = conv2(f,g); figure; plot(Conv_f_g); Dfg = fft (Conv_f_g,4); figure; plot(abs(Dfg)); Df1 = fft (f,3); Dg1 = fft (g,3); Dfg1 = Df1.*Dg1; figure; plot(abs(Dfg1)); Df2 = fft (f,4); Dg2 = fft (g,4); Dfg2 = Df2.*Dg2; figure; plot(abs(Dfg2)); Inv_Dfg2 = ifft(Dfg2,4); figure; plot(Inv_Dfg2);
17
Bahadir K. Gunturk17 DFT in MATLAB Increasing the DFT size f = [1 1]; g = [2 2 2]; Df1 = fft (f,4); Dg1 = fft (g,4); Dfg1 = Df1.*Dg1; figure; plot(abs(Dfg1)); Df2 = fft (f,20); Dg2 = fft (g,20); Dfg2 = Df2.*Dg2; figure; plot(abs(Dfg2)); Df3 = fft (f,100); Dg3 = fft (g,100); Dfg3 = Df3.*Dg3; figure; plot(abs(Dfg3));
18
Bahadir K. Gunturk18 DFT in MATLAB Scale axis and use fftshift f = [1 1]; g = [2 2 2]; Df1 = fft (f,100); Dg1 = fft (g,100); Dfg1 = Df1.*Dg1; t = linspace(0,1,length(Dfg1)); figure; plot(t, abs(Dfg1)); Dfg1_shifted = fftshift(Dfg1); t2 = linspace(-0.5, 0.5, length(Dfg1_shifted)); figure; plot(t, abs(Dfg1_shifted));
19
Bahadir K. Gunturk19 Example
20
Bahadir K. Gunturk20 Example
21
Bahadir K. Gunturk21 DFT-Domain Filtering a = imread(‘cameraman.tif'); Da = fft2(a); Da = fftshift(Da); figure; imshow(log(abs(Da)),[]); H = zeros(256,256); H(128-20:128+20,128-20:128+20) = 1; figure; imshow(H,[]); Db = Da.*H; Db = fftshift(Db); b = real(ifft2(Db)); figure; imshow(b,[]); Frequency domainSpatial domain H
22
Bahadir K. Gunturk22 Low-Pass Filtering 81x8161x61 121x121
23
Bahadir K. Gunturk23 Low-Pass Filtering * = DFT(h) h
24
Bahadir K. Gunturk24 High-Pass Filtering * = DFT(h) h
25
Bahadir K. Gunturk25 High-Pass Filtering High-pass filter
26
Bahadir K. Gunturk26 Anti-Aliasing a=imread(‘barbara.tif’);
27
Bahadir K. Gunturk27 Anti-Aliasing a=imread(‘barbara.tif’); b=imresize(a,0.25); c=imresize(b,4);
28
Bahadir K. Gunturk28 Anti-Aliasing a=imread(‘barbara.tif’); b=imresize(a,0.25); c=imresize(b,4); H=zeros(512,512); H(256-64:256+64, 256-64:256+64)=1; Da=fft2(a); Da=fftshift(Da); Dd=Da.*H; Dd=fftshift(Dd); d=real(ifft2(Dd));
29
Bahadir K. Gunturk29 Noise Removal For natural images, the energy is concentrated mostly in the low-frequency components. Profile along the red line DFT of “Einstein” “Einstein” Noise=40*rand(256,256); Signal vs Noise
30
Bahadir K. Gunturk30 Noise Removal At high-frequencies, noise power is comparable to the signal power. Signal vs Noise Low-pass filtering increases signal to noise ratio.
31
Bahadir K. Gunturk31 Appendix
32
Bahadir K. Gunturk32 Appendix: Impulse Train ■ The Fourier Transform of a comb function is
33
Bahadir K. Gunturk33 Impulse Train (cont’d) ■ The Fourier Transform of a comb function is (Fourier Trans. of 1) ?
34
Bahadir K. Gunturk34 Impulse Train (cont’d) ■ Proof
35
Bahadir K. Gunturk35 Appendix: Downsampling Question: What is the Fourier Transform of ?
36
Bahadir K. Gunturk36 Downsampling Let Using the multiplication property:
37
Bahadir K. Gunturk37 Downsampling where
38
Bahadir K. Gunturk38 Example
39
Bahadir K. Gunturk39 Example ?
40
Bahadir K. Gunturk40 Downsampling
41
Bahadir K. Gunturk41 Example
42
Bahadir K. Gunturk42 Example No aliasing if
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.