Presentation is loading. Please wait.

Presentation is loading. Please wait.

CYTOSKELETON 1. SIGNIFICANCE OF CYTOSKELETON IN MEDICINE Example: Cytoskeletal structure: mitotic spindle (microtubules) * Cancer diseases therapy: taxanes.

Similar presentations


Presentation on theme: "CYTOSKELETON 1. SIGNIFICANCE OF CYTOSKELETON IN MEDICINE Example: Cytoskeletal structure: mitotic spindle (microtubules) * Cancer diseases therapy: taxanes."— Presentation transcript:

1 CYTOSKELETON 1

2 SIGNIFICANCE OF CYTOSKELETON IN MEDICINE Example: Cytoskeletal structure: mitotic spindle (microtubules) * Cancer diseases therapy: taxanes & vinblastine, vincristine 2

3 CYTOSKELETON: 1.Cytoskeleton and its function 2.Types of cytoskeletal filaments 3.Structure of microtubules 4.Function of microtubules 5.Structure of intermediate filaments 6.Function of intermediate filaments 7.Structure of microfilaments 8.Function of microfilaments 3

4 1. CYTOSKELETON AND ITS FUNCTION: What is the cytoskeleton? Functions of cytoskeleton: Intrinsic support of the cell (“skeleton of the cell“) Movements of the cell Cell signalization Dynamic balance between monomeric units and polymeric filaments of the cytoskeleton[FIG.] 4

5 5

6 2. TYPES OF CYTOSKELETAL FILAMENTS: Three types of cytoskeletal filaments: Microtubules Intermediate filaments Microfilaments (actin filaments) Microtubules: Monomer: tubulin (α tubulin & β tubulin) Filament: Ø 25 nm[FIG.] Intermediate filaments: Monomers: lamins (nuclear lamina) keratins (epithelial cells and their derivates) vimentin (cells of mesenchymal origin) desmin (muscle) proteins of neurofilaments (neurons) Filament: Ø about 10 nm[FIG.] Microfilaments: Monomer: actin Filament: Ø about 7 nm[FIG.] 6

7 7

8 2. TYPES OF CYTOSKELETAL FILAMENTS: Three types of cytoskeletal filaments: Microtubules Intermediate filaments Microfilaments (actin filaments) Microtubules: Monomer: tubulin (α tubulin & β tubulin) Filament: Ø 25 nm[FIG.] Intermediate filaments: Monomers: lamins (nuclear lamina) keratins (epithelial cells and their derivates) vimentin (cells of mesenchymal origin) desmin (muscle) proteins of neurofilaments (neurons) Filament: Ø about 10 nm[FIG.] Microfilaments: Monomer: actin Filament: Ø about 7 nm[FIG.] 8

9 9

10 2. TYPES OF CYTOSKELETAL FILAMENTS: Three types of cytoskeletal filaments: Microtubules Intermediate filaments Microfilaments (actin filaments) Microtubules: Monomer: tubulin (α tubulin & β tubulin) Filament: Ø 25 nm[FIG.] Intermediate filaments: Monomers: lamins (nuclear lamina) keratins (epithelial cells and their derivates) vimentin (cells of mesenchymal origin) desmin (muscle) proteins of neurofilaments (neurons) Filament: Ø about 10 nm[FIG.] Microfilaments: Monomer: actin Filament: Ø about 7 nm[FIG.] 10

11 11

12 Mechanical properties of individual types of cytoskeletal fibres[FIG.] 12

13 13

14 3. STRUCTURE OF MICROTUBULES: Protofilaments: polymer consisting of dimers of α tubulin a β tubulin Microtubule: 13 protofilaments[FIG.] Polymerization: binding of GTP (GDP) + end, - end of microtubules Dynamic instability[FIG.] MTOC (microtubules organizing center) 14

15 15

16 3. STRUCTURE OF MICROTUBULES: Protofilaments: polymer consisting of dimers of α tubulin a β tubulin Microtubule: 13 protofilaments[FIG.] Polymerization: binding of GTP (GDP) + end, - end of microtubules Dynamic instability[FIG.] MTOC (microtubules organizing center) 16

17 17

18 3. STRUCTURE OF MICROTUBULES: Protofilaments: polymer consisting of dimers of α tubulin a β tubulin Microtubule: 13 protofilaments[FIG.] Polymerization: binding of GTP (GDP) + end, - end of microtubules Dynamic instability[FIG.] MTOC (microtubules organizing center) 18

19 4. FUNCTION OF MICROTUBULES: Mitotic spindle: centrosomes[FIG.] Flagella and cilia: structure (9 doublets +2) movement (motor protein dynein)[FIG.] Tracks for the movement of organelles: motor proteins (molecular motors) dynein a kinesin 19

20 20

21 4. FUNCTION OF MICROTUBULES: Mitotic spindle: centrosomes[FIG.] Flagella and cilia: structure (9 doublets +2) movement (motor protein dynein)[FIG.] Tracks for the movement of organelles: motor proteins (molecular motors) dynein a kinesin 21

22 22

23 4. FUNCTION OF MICROTUBULES: Mitotic spindle: centrosomes[FIG.] Flagella and cilia: structure (9 doublets +2) movement (motor protein dynein)[FIG.] Tracks for the movement of organelles: motor proteins (molecular motors) dynein a kinesin 23

24 Drugs affecting the function of microtubules: Colchicine (stabilization of free tubulin) Vinblastine, vincristine (stabilization of free tubulin) Taxol (stabilization of microtubules) 24

25 5. STRUCTURE OF INTERMEDIATE FILAMENTS: Monomeric molecules: central α-helical domain and two peripheral globular domains Fibers: polymer of tetramers (2 antiparallel dimers) Intermediate filaments: 8 twisted fibres (rope-like structure) [FIG.] 25

26 26

27 6. FUNCTION OF INTERMEDIATE FILAMENTS: Nuclear lamina: structure (lamins) and localization function [FIG.] Intermediate filaments in cytoplasm: tissue-specific types of proteins function (mechanical resistance of the cell) [FIG.] 27

28 28

29 6. FUNCTION OF INTERMEDIATE FILAMENTS: Nuclear lamina: structure (lamins) and localization function [FIG.] Intermediate filaments in cytoplasm: tissue-specific types of proteins function (mechanical resistance of the cell) [FIG.] 29

30 30

31 7. STRUCTURE OF MICROFILAMENTS: Fibres: polymers of actin Microfilaments: double-helix[FIG.] Polymerization: binding of ATP (ADP) + end, - end of microfilaments Dynamic instability[FIG.] 31

32 32

33 7. STRUCTURE OF MICROFILAMENTS: Fibres: polymers of actin Microfilaments: double-helix[FIG.] Polymerization: binding of ATP (ADP) + end, - end of microfilaments Dynamic instability[FIG.] 33

34 34

35 8. FUNCTION OF MICROFILAMENTS: Microvilli Cell cortex: structure and localization function Contractile ring: cytokinesis Lamellipodia, filopodia, pseudopodia: amoeboid locomotion of the cell [FIG.] [FIG.] Contractile bundles: “muscles“ of the cell Association with motor protein myosin: motility (muscles) 35

36 36

37 37

38 8. FUNCTION OF MICROFILAMENTS: Microvilli Cell cortex: structure and localization function Contractile ring: cytokinesis Lamellipodia, filopodia, pseudopodia: amoeboid locomotion of the cell [FIG.] [FIG.] Contractile bundles: “muscles“ of the cell Association with motor protein myosin: motility (muscles) 38

39 LITERATURE: Alberts B. et al.: Essential Cell Biology. Garland Science. New York and London, pp. 571-607, 2010. 39


Download ppt "CYTOSKELETON 1. SIGNIFICANCE OF CYTOSKELETON IN MEDICINE Example: Cytoskeletal structure: mitotic spindle (microtubules) * Cancer diseases therapy: taxanes."

Similar presentations


Ads by Google