Download presentation
Published byMichael Hall Modified over 9 years ago
1
Vector Error Correction and Vector Autoregressive Models
Chapter 13 Vector Error Correction and Vector Autoregressive Models Walter R. Paczkowski Rutgers University
2
13.2 Estimating a Vector Error Correction Model
Chapter Contents 13.1 VEC and VAR Models 13.2 Estimating a Vector Error Correction Model 13.3 Estimating a VAR Model 13.4 Impulse Responses and Variance
3
A priori, unless we have good reasons not to, we could just as easily have assumed that yt is the independent variable and xt is the dependent variable Our models could be: Eq. 13.1a Eq. 13.1b
4
For Eq. 13. 1a, we say that we have normalized on y whereas for Eq. 13
For Eq. 13.1a, we say that we have normalized on y whereas for Eq. 13.1b we say that we have normalized on x
5
We want to explore the causal relationship between pairs of time-series variables
We will discuss the vector error correction (VEC) and vector autoregressive (VAR) models
6
Terminology Univariate analysis examines a single data series Bivariate analysis examines a pair of series The term vector indicates that we are considering a number of series: two, three, or more The term ‘‘vector’’ is a generalization of the univariate and bivariate cases
7
13.1 VEC and VAR Models
8
Consider the system of equations:
13.1 VEC and VAR Models Consider the system of equations: Together the equations constitute a system known as a vector autoregression (VAR) In this example, since the maximum lag is of order 1, we have a VAR(1) Eq. 13.2
9
13.1 VEC and VAR Models If y and x are nonstationary I(1) and not cointegrated, then we work with the first differences: Eq. 13.3
10
13.1 VEC and VAR Models Consider two nonstationary variables yt and xt that are integrated of order 1 so that: Eq. 13.4
11
The coefficients α11, α21 are known as error correction coefficients
13.1 VEC and VAR Models The VEC model is: which we can expand as: The coefficients α11, α21 are known as error correction coefficients Eq. 13.5a Eq. 13.5b
12
Let’s consider the role of the intercept terms
13.1 VEC and VAR Models Let’s consider the role of the intercept terms Collect all the intercept terms and rewrite Eq. 13.5b as: Eq. 13.5c
13
Estimating a Vector Error Correction Model
13.2 Estimating a Vector Error Correction Model
14
Estimating a Vector Error Correction Model
13.2 Estimating a Vector Error Correction Model There are many econometric methods to estimate the error correction model A two step least squares procedure is: Use least squares to estimate the cointegrating relationship and generate the lagged residuals Use least squares to estimate the equations: Eq. 13.6a Eq. 13.6b
15
Estimating a Vector Error Correction Model
13.2 Estimating a Vector Error Correction Model FIGURE 13.1 Real gross domestic products (GDP = 100 in 2000) 13.2.1 Example
16
Estimating a Vector Error Correction Model
13.2 Estimating a Vector Error Correction Model To check for cointegration we obtain the fitted equation (the intercept term is omitted because it has no economic meaning): A formal unit root test is performed and the estimated unit root test equation is: Eq. 13.7 Eq. 13.8
17
Estimating a Vector Error Correction Model
13.2 Estimating a Vector Error Correction Model FIGURE 13.2 Residuals derived from the cointegrating relationship
18
Estimating a Vector Error Correction Model
13.2 Estimating a Vector Error Correction Model The estimated VEC model for {At, Ut} is: Eq. 13.9
19
13.3 Estimating a VAR Model
20
13.3 Estimating a VAR Model The VEC is a multivariate dynamic model that incorporates a cointegrating equation We now ask: what should we do if we are interested in the interdependencies between y and x, but they are not cointegrated?
21
13.3 Estimating a VAR Model FIGURE 13.3 Real personal disposable income and real personal consumption expenditure (in logarithms)
22
The test for cointegration for the case normalized on C is:
13.3 Estimating a VAR Model The test for cointegration for the case normalized on C is: This is a Case 2 since the cointegrating relationship contains an intercept term Eq
23
13.3 Estimating a VAR Model For illustrative purposes, the order of lag in this example has been restricted to one In general, we should test for the significance of lag terms greater than one The results are: Eq a Eq b
24
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions
25
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions Impulse response functions and variance decompositions are techniques that are used by macroeconometricians to analyze problems such as the effect of an oil price shock on inflation and GDP growth, and the effect of a change in monetary policy on the economy
26
13.4 Impulse Responses and Variance Decompositions 13.4.1 Impulse Response Functions Impulse response functions show the effects of shocks on the adjustment path of the variables
27
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions 13.4.1a The Univariate Case Consider a univariate series: yt = ρyt-1 + vt The series is subject to a shock of size v in period 1 At time t = 1 following the shock, the value of y in period 1 and subsequent periods will be:
28
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions 13.4.1a The Univariate Case The values of the coefficients {1, ρ, ρ2, ...} are known as multipliers and the time-path of y following the shock is known as the impulse response function
29
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions FIGURE 13.4 Impulse responses for an AR(1) model yt = 0.9yt-1 + et following a unit shock 13.4.1a The Univariate Case
30
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions 13.4.1b The Bivariate Case Consider an impulse response function analysis with two time series based on a bivariate VAR system of stationary variables: Eq
31
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions 13.4.1b The Bivariate Case The mechanics of generating impulse responses in a system is complicated by the facts that: one has to allow for interdependent dynamics (the multivariate analog of generating the multipliers) one has to identify the correct shock from unobservable data Together, these two complications lead to what is known as the identification problem
32
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions 13.4.1b The Bivariate Case Consider the case when there is a one–standard deviation shock (alternatively called an innovation) to y:
33
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions 13.4.1b The Bivariate Case
34
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions FIGURE 13.5 Impulse responses to standard deviation shock 13.4.1b The Bivariate Case
35
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions 13.4.1b The Bivariate Case
36
13.4 Impulse Responses and Variance Decompositions 13.4.2 Forecast Error Variance Decompositions Another way to disentangle the effects of various shocks is to consider the contribution of each type of shock to the forecast error variance
37
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions 13.4.2a Univariate Analysis Consider a univariate series: yt = ρyt-1 + vt The best one-step-ahead forecast (alternatively the forecast one period ahead) is:
38
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions 13.4.2a Univariate Analysis In this univariate example, there is only one shock that leads to a forecast error The forecast error variance is 100% due to its own shock The exercise of attributing the source of the variation in the forecast error is known as variance decomposition
39
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions 13.4.2b Bivariate Analysis We can perform a variance decomposition for our special bivariate example where there is no identification problem Ignoring the intercepts (since they are constants), the one–step ahead forecasts are:
40
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions 13.4.2b Bivariate Analysis The two–step ahead forecast for y is:
41
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions 13.4.2b Bivariate Analysis The two–step ahead forecast for x is:
42
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions 13.4.2b Bivariate Analysis The corresponding two-step-ahead forecast errors and variances are:
43
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions 13.4.2b Bivariate Analysis This decomposition is often expressed in proportional terms The proportion of the two step forecast error variance of y explained by its ‘‘own’’ shock is: The proportion of the two-step forecast error variance of y explained by the ‘‘other’’ shock is:
44
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions 13.4.2b Bivariate Analysis Similarly, the proportion of the two-step forecast error variance of x explained by its own shock is: The proportion of the forecast error of x explained by the other shock is:
45
Impulse Responses and Variance Decompositions
13.4 Impulse Responses and Variance Decompositions 13.4.2c The General Case Contemporaneous interactions and correlated errors complicate the identification of the nature of shocks and hence the interpretation of the impulses and decomposition of the causes of the forecast error variance
46
Key Words
47
dynamic relationships error correction
Keywords dynamic relationships error correction forecast error variance decomposition identification problem impulse response functions VAR model VEC model
48
Appendix
49
The Identification Problem
A bivariate dynamic system with contemporaneous interactions (also known as a structural model) is written as: In matrix terms: Eq. 13A.1
50
The Identification Problem
More compactly, BYt = AYt-1 + Et where:
51
The Identification Problem
A VAR representation (also known as reduced-form model) is written as: Eq. 13A.2
52
The Identification Problem
In matrix form, this is Yt = Cyt-1 + Vt where:
53
The Identification Problem
There is a relationship between Eq. 13A.1 and Eq. 13A.2 with:
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.