Presentation is loading. Please wait.

Presentation is loading. Please wait.

Micro-diffractive nanostructures for cold-atom manipulation (and other interesting stuff) Groupe optique atomique et applications aux nanostructures Université.

Similar presentations


Presentation on theme: "Micro-diffractive nanostructures for cold-atom manipulation (and other interesting stuff) Groupe optique atomique et applications aux nanostructures Université."— Presentation transcript:

1 Micro-diffractive nanostructures for cold-atom manipulation (and other interesting stuff) Groupe optique atomique et applications aux nanostructures Université Paul Sabatier—CNRS Toulouse, France http://www.nanocold.cict.fr http://www.fastnet.fr FRISNO-8 Ein-Bokek, Israel February 20-25, 2005

2 The basic idea incoming laser light output optical field structured surface cold atoms

3 Subwavelength Structures FIB Fabrication

4 Arrays of Holes in Metal Films Light transmission spectrum Is this evidence of surface plasmons?

5 Decorated Slits and Holes in Subwavelength Ag Membranes

6 Light transmission through a slit flanked by periodic grooves detected far-field transmission calculated profile Garcia-Vidal, et al., Appl. Phys. Lett. 83, 4500 (2003)

7 Measuring the transmission profile– atomic fluorescence mapping of the field intensity

8 Relation between atomic fluorescence and field intensity excited atoms field intensity

9 100 nm slit flanked by 10 grooves each side measured calculated

10 How does the slit/groove structure produce the observed field distributions?

11 Composite Diffracted Evanescent Wave Lezec and Thio Optics Express, 12 3629 (2004)

12 Composite Evanescent Wave-I Consider diffraction at a slit of width d. The field along x is given by: Kowarz, Appl. Optics. 34, 3055 (1995) - =

13 Composite Evanescent Wave-II The phase shift of pi/2 is a signature of the CEW. x/d

14 CEWs launched on the surface incoming laser light output optical field structured surface

15 A pi/2 phase shift between the directly transmitted wave and the CEW 100 nm 830 nm 50 nm variable jog incoming light We can “jog” the structures to compensate for the phase shift

16 Jogged and unjogged slit structures unjogged jogged inward by ¼ period

17 Distribution and number of grooves controls the output optical field far-field intensity, no phase shift far-field intensity, with phase shift We can produce a “phased array” with constructive interference in the forward direction. The result is a forward “flame”.

18 Flame divergence vs. grooves—expmt. and model for unjogged grooves 10 grooves 30 grooves calculation

19 Flame intensity vs. groove number for jogged and unjogged grooves unjogged jogged

20 Flame angular distributions f CCD microscope objective d

21 Angular distribution of light vs. groove-slit spacing (in units of period N) for 5 grooves

22 Intensity angular distribution—jogged grooves output side, 3 selected distances CDEW model measured

23 Intensity angular distribution—output side, unjogged red, jogged black CDEW model: Phase shift:  CDEW  /2 Index: n CDEW =850/830=1.024 Relative field amplitude  x=2/x

24 Angular lobe spacing jogged unjogged CDEW modelExperiment

25 Next step: mirror MOT to get cold atoms close to surface

26 Next step: mirror MOT with the optical funnel generated by a planar nanostructured phased array Mirror MOT atom trajectories phased array structure optical funnel plane wave excitation

27 Toward integrated structures: cold atom sources and transport on a chip

28 Interaction atomes neutres-lumière Champs proches optiques : confinement sub-longueur d’onde de la lumière. nanolithographie optique atomique cohérente : diffraction interaction dipolaire Diffraction and confinement

29 Coupled resonant rings: symmetric/antisymmetric modes

30 Funnel effect: optical potential above the rings

31 Proposé et réalisé : J.V. Hajnal & G.I Opat (1989). Théorie : R. Deutschmann (1993), C. Henkel (1994). Expérience : Villetaneuse (1996), Orsay (1998). * Réseau à onde évanescente stationnaire +1

32 Réseau à onde évanescente nanostructurée : période orientation motif Diffraction de l’onde évanescente : A. Roberts & J.E. Murphy (1996) Autre approche : potentiel nanostructuré D. van Labeke & D. Barchiesi

33 Periodicity controllable through angle of optical coupling-1 50 nm above surface250 nm above surface

34 Periodicity controllable through angle of optical coupling-2 50 nm above surface250 nm above surface

35 dB =5nm L x =L y =250nm  diff =20mrad e  100nm  =40°  =55° n=2.1 (TiO2) z r =250nm MOT Experimental parameters

36 Tales from the future—nanophotonics, addressable atom manipulation with optical arrays

37

38

39 E=10V/200nm E= 0.5 10 8 V/m BaTiO 3 : n 0 =2.4 r 42 =1300pm/V  n=0.45 (20%)

40 SrRu 4 O 3 BaTiO 3 Quartz Electro-Optic Beaming Control with variable index of refraction Ag V Variable Depth Focusing

41 SrRu 4 O 3 BaTiO 3 Quartz Electro-Optic Beaming Control Ag V Steering Change n from 0.8 to 1.2

42

43 Future: arrays of optical traps loaded with one or more atoms 125µm R. Dumke, et al. PRL 89, 097903 (2002)

44 Summary—evolution of conception Yesterday:Today: 10 µm Tomorrow:

45 The Group Guillaume Gay Renaud Mathevet Bruno Viaris Olivier Alloschery Colm O’Dwyer Gaetan Leveque


Download ppt "Micro-diffractive nanostructures for cold-atom manipulation (and other interesting stuff) Groupe optique atomique et applications aux nanostructures Université."

Similar presentations


Ads by Google