Download presentation
Presentation is loading. Please wait.
Published byHarold McCoy Modified over 9 years ago
1
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Search for + pentaquark at Belle KEKB and Belle detector Inclusive production of + Exclusive production of + B. Golob University of Ljubljana, Slovenia Belle Collaboration University of Ljubljana hep-ex/0507014 submitted to PLB
2
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Integrated luminosity [pb -1 ] date Apr‘99 Oct‘05 KEKB KEKB: asymmetric B factory diameter ~1 km Mt. Tsukuba KEKB Belle (4s) e+e+ e-e- p(e + )= 3.5 GeV/c p(e - )= 8.0 GeV/c ∫Ldt = 480 fb -1 L peak = 1.58x10 34 s -1 cm -2 Presented analysis: ∫Ldt = 357 fb -1
3
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Belle detector 3(4) layer Si det. Central Drift Chamber Aerogel Cherenkov (n=1.015- 1.030) 1.5T SC solenoid e - 8 GeV e + 3.5 GeV EM calorimeter CsI (16X 0 ) and K L Counter (14/15 layers RPC+Fe) (p t )/p t = 0.3% √p t 2 +1 Particle ID (K ± )~85% ( ± →K ± )<~10% @ p<3.5 GeV/c
4
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Measurement method schematic view kaons produced in e + e - annihilation as projectiles search for + (1540) in secondary interactions SVD CDC Selection: identified p, K ± ; not from IP ( r>0.1 cm); K s -> + - ; detached vtx, not from IP ( r>0.1 cm), 3 within m(K s ) pK detached vtx (1 cm < r < 11 cm); p K -,K s K ±,K s,K L N in material K 0 K ± p n K - K s ds us uud udd us ds ds us ( ) X primary K ± momentum; ~500 MeV/c
5
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Measurement method (x,y) coord. of pK s secondary vertices => detector “tomography” pK pairs arising from interactions with nucleons in detector material
6
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Inclusive production of + inclusive ≡ analysis of m(pK - ) and m(pK s ); no suppression of inelastic reactions, no estimate of charge exchange K + n → pK s mass of secondary pK fit to threshold func.+ D-wave BW resolution func. (4.02±0.08)x10 4 (1520) (±2.5 ) and m consistent with PDG pK → (1520) → pK formation, p( ) ~ 400 MeV/c pK → (1520) X → pK production 0.5% vtx’s with add. K → (1520) X
7
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Inclusive production of + fit m(pK s ) to Gaussian + 3rd order polinomyal ~2 MeV/c 2 from MC + small corr. from - → K- < 2.5% @ 90% C.L. assuming B( + →pK s )=25%; using B( *→pK - )= ½ B( *→NK)= ½ (45±1)%; ’s from MC; Exp.processE[GeV] ( + )/ ( *) CDF pp→ + X 1960<3% HERA-B pA→ + X 42<2% SPHINX pA→ + X 12<2% Belle KA→ + X ~2<2.5% LEPS A→ + X ~2~60% HERMES eD→ + X 7~200%
8
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Exclusive production of + exclusive ≡ search for K + n → + → pK s motivated by DIANA result Phys.Atom.Nucl. 66, 1715 (2003) main steps suppression of inelastic reactions (additional 0 or unrec. + major bkg.; also contributions from K s,L p → pK s ) normalize to charge exchange K + n → pK s (N ch ) N ch indirectly from elastic K + p → K + p (N el ) interpretation N + /N ch + Cahn, Trilling, PRD69, 11501 (2004) N + /N ch = 0.66 ± 0.19 + = 0.9 ± 0.3 MeV
9
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Exclusive production of + number of charge exchange events: K + flux x-sect. material reconstr. efficiency no-rescattering nuclear prob. spectral func. MC may not reproduce M and accurately enough; P and S model dependent; use data and estimate N ch relative to N el K + n → pK s K + p → K + p
10
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Exclusive production of + D* - → D 0 - → (K + - ) D0 - p K+K+ ratio N ch /N el Material and nuclear effects mostly cancel out process enabling a “counting” of K + p → pK + :
11
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 E K = E pK – E N p K = f(E K,r SV,r IP ) p F = p pK - p K Exclusive production of + reconstruction: D* - → D 0 - → (K + - ) D0 - p K+K+ K + projectile E N = m N - 2 - p F 2 /2m N ~ 7 MeV; Sibirtsev et al., EPJ A23, 491(2005) relations: e + e - ineraction point ( r IP ) secondary vtx ( r SV ) Solve iteratively for p K, p F
12
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Exclusive production of + m D* from secondary pK + pairs combined with additional pions N el D* = 470±26 p F for elastic events (D 0 ), bkg. subtracted interact- ions on hydrogen in bins of m(pK + ) N el D* = 21 ± 7 ( mass) selected (enhanced elastic reactions)
13
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Exclusive production of + K+ / K+ D* = 850±20 ( mass) ch / el = 0.35±0.02 from fit to published data; typical single experiment uncertainty from MC from ~20% of data uniform over running period pKs / pK+ = 0.43±0.05
14
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Exclusive production of + Fit m(pK s ) for possible + signal no vtx’s with additional tracks 50 MeV/c < p F < 300 MeV/c 3rd order polynom.+signal ( =2 MeV/c 2 ) yield at various m(pK s ) and UL similar sensitivity as DIANA + < 0.64 MeV @ 90% C.L. DIANA: + = 0.9±0.3 MeV
15
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Summary (1540) + signal searched for using kaon secondary interactions similar CM energy as in some positive result exp’s inclusive search (KN → (1540) + X)/ (KN → (1520)X)<2.5% @90% C.L. exclusive search K + n → (1540) + → p K s yield normalized to total charge exchange K + n → p K s similar sensitivity to DIANA exp. + < 0.64 MeV @90% C.L. for m( + )=1540 MeV/c 2 + < 1 MeV @90% C.L. for m( + )≤1570 MeV/c 2
16
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Selection details, backup PID p: L p/K > 0.6, L p/ > 0.6 K±: L K/p > 0.6, L K/p > 0.6 not identified as e ± L: likelihood based on CDC, ACC, TOF K s + - ±10 MeV (3 ) from m(K s ) z dist at vtx < 1 cm r of daughters > 0.1 cm (p(K s ), r(vtx,IP)) < 90 o pK vtx r(p,K ± ) > 0.1 cm z dist at vtx < 1 cm (p(pK), r(vtx,IP)) < 90 o other 50 MeV/c < p F < 300 MeV/c d/R > 0.1 (d – dist. to nearest track, R – radial coordinate of vtx) angular cuts (DIANA) do not improve S/N or sensitivity after the p F selection applied (suppression of 1.2, =93% significance ~1.02) typical resolution on sec. vtx ~400 m (r)
17
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 projectiles, backup Formation: possible projectiles to produce (1520): K -, K s, K L, (?) p( )≥1.8 GeV/c (z≥0.35) to produce (1520) @29 GeV fraction (z≥0.35) ~10% (e + e - → X)~80 pb (e + e - →K 0 X)~470 pb N( )/N(K 0 ) ~ 2% Tasso, PRD45, 3949 (1992) (K - p→ (1520))~3 mb, ( p, total)~30mb assuming equal prod. rate of K 0, K - p→ (1520)X / Kp→ (1520)X ~ 10% (if ( p, total) saturated by (1520)) projectiles contribute few % to (1520) production Fitted parameters Of (1520): m=1518.5±0.1 MeV/c 2 =13.5±0.4 MeV PDG: m=1519.5±1.0 MeV/c 2 =15.6±1.0 MeV
18
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Spectral function, backup Energy of nucleon within a nuclei; E q = √q 2 +m N 2 – U(q, ) U(q, ) – nuclear potential Fermi momentum ~300 MeV/c E q ≈ m N + q 2 /2m N - U(q, ) if U 1/r, virial theorem, U ~ -2 q 2 /2m N E q ≈ m N - q 2 /2m N checks: use of E q ≈ m N – 2 - q 2 /2m N, with fixed gives - correct m D0 - expected p F distrib. use of E q = m N – E R E R (removal energy) tuned to reproduce m D0 → E R =26 MeV E R = 2 + q 2 /2m N, nucleons with higher momenta are more tightly bound A.Sibirtsev et al. EPJ A23, 491(2005) Z.Phys. A358, 357(1997)
19
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 + exclusive – integrals, backup products M approx. independent of → decoupled from fraction of recon. D* in p F hydrogen peak w.r.t. all ~independent of p(pK); since fraction 1/P P ~ F(p(pK)) all quantities depending only on m(pK) → factorize cancels in the ratio remaining eff. dependence on p(pK) at given m(pK) S(E N,p F ) = W(p F ) (E N -f(p F )); W(p F ) Fermi mom. distrib. (data); f(p F ) defined so that E N = f(p F ) max. of S(E N,p F )
20
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 + exclusive – integrals, backup ratio N ch /N el MC integration; p F assumed isotropic w.r.t. p K ; (p(pK)) → 3% corr. to the ratio; uncertainty dominated by assumed E N, p F relation
21
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 p F distribution, backup Fit to p 0 =115±4 MeV/c comparable to other measurements of p F, e.g. B.M. Abramov et al., JETP Lett. 71, 359(2000) (oscillator model) using E N =m N hydrogen peak exactly at 0
22
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 additional plots, backup major uncertainty from E N, p F relation K+ / K+ D* = 850±20 ch / el = 0.35±0.02 from fit to published data; typical single experiment uncertainty N el D* =470±26 =16 MeV/c 2 pKs / pK+ = 0.43±0.05 from Geant based MC; uncertainties in tracking and K s eff., second. vtx eff., material desc., reaction kinem., MC stat. Fit to m(pK s ) sensitivity to + ±0.42 MeV
23
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 +, backup R.N. Cahn, G.H. Trilling, PRD69, 11501 (2004) BW form (m) = B i B f 0 [ 2 /4] / [(m-m 0 ) 2 + 2 /4] 0 =68 mb (J=1/2) mass resolution broader than natural width integral I=∫ (m) dm = 107 mb B i B f estimate of 26 signal evts in two 5 MeV bins, bkg. level ~22 evts / bin assumed bkg. from charge exchange, ch =4.1±0.3 mb I = (26/22) x 5 MeV x 4.1 mb = 24 mb MeV B i =B f =1/2 =0.9±0.3 MeV
24
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Ks,K L p → + → p K s, backup A. Kaidalov, private comm. apart from charge exchange reactions also K s p → K s p and K L p → K s p may contribute to signal K L p → + → p K s interference between amplitudes for same final state can lead to “hole” in (K L p, total) due to + (K L p, total) ~ 2 mb negative interference < 1 mb (also depending on decay angles) (K + n → + → p K s ) ~ 17 mb (DIANA) “hole” negligible K s p → + → p K s would also compensate for that
25
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Other states, backup mass of secondary pK total (pK - ) shows two prominent structures at 1520 MeV/c 2 and at ~1800 MeV/c 2 ; latter due to several overllaping and states; clearly seen, hard to interpret look for (1670) 4* resonance m=1665-1685 (≈1670) MeV/c2 =40-80 (≈60) MeV Fit m(pK s ) to sum of 3rd order polyn.+ D-wave BW N( (1670))=(2.4±1.3)x10 3 (1670)/ (1520) < 2 @90% C.L. assuming B( *→pK - )= ½ B( *→NK)= ½ (45±1)%; B( (1670)→pK 0 )=10%
26
B. Golob Pentaquark ‘05, Jefferson Lab, Oct 2005 Some additional statistics, backup 95% C.L. limits: + < 0.78 MeV (@ 1539 MeV/c 2 ) < 1.11 MeV (wide range) probability of stat. fluctuation for the signal of the DIANA size to the level observed by BELLE ~3%
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.