Download presentation
Presentation is loading. Please wait.
Published byLewis Hodge Modified over 9 years ago
1
DNA molecule Gene 1 Gene 2 Gene 3 DNA template strand TRANSCRIPTION TRANSLATION mRNA Protein Codon Amino acid 1
2
Second mRNA base First mRNA base (5 end of codon) Third mRNA base (3 end of codon) 2
3
Wild-type 3 DNA template strand 5 5 5 3 3 Stop Carboxyl end Amino end Protein mRNA 3 3 3 5 5 5 A instead of G U instead of C Silent (no effect on amino acid sequence) Stop T instead of C 3 3 3 5 5 5 A instead of G Stop Missense A instead of T U instead of A 3 3 3 5 5 5 Stop Nonsense No frameshift, but one amino acid missing (3 base-pair deletion) Frameshift causing extensive missense (1 base-pair deletion) Frameshift causing immediate nonsense (1 base-pair insertion) 5 5 5 3 3 3 Stop missing 3 3 3 5 5 5 Stop 5 5 5 3 3 3 Extra U Extra A (a) Base-pair substitution(b) Base-pair insertion or deletion 3
4
Wild-type hemoglobin DNA mRNA Mutant hemoglobin DNA mRNA 3 3 3 3 3 3 5 5 5 5 5 5 CCTT T T G G A A A A AA A GG U Normal hemoglobinSickle-cell hemoglobin Glu Val 4
5
Primary structure Secondary and tertiary structures Quaternary structure Normal hemoglobin (top view) Primary structure Secondary and tertiary structures Quaternary structure Function subunit Molecules do not associate with one another; each carries oxygen. Red blood cell shape Normal red blood cells are full of individual hemoglobin moledules, each carrying oxygen. 10 µm Normal hemoglobin 1234567 Val His Leu ThrPro Glu Red blood cell shape subunit Exposed hydrophobic region Sickle-cell hemoglobin Molecules interact with one another and crystallize into a fiber; capacity to carry oxygen is greatly reduced. Fibers of abnormal hemoglobin deform red blood cell into sickle shape. 10 µm Sickle-cell hemoglobin GluPro Thr Leu His Val 1234567 5
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.