Download presentation
Presentation is loading. Please wait.
Published byKory Richards Modified over 9 years ago
1
Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and Filters * Part C: Using Transfer Functions and RLC Circuits * Part D: Equivalent Impedance and DC Sweeps
2
Part A w Introduction to Transfer Functions and Phasors w Complex Polar Coordinates w Complex Impedance (Z) w AC Sweeps
3
Transfer Functions w The transfer function describes the behavior of a circuit at V out for all possible V in.
4
Simple Example
5
More Complicated Example What is H now? H now depends upon the input frequency ( = 2 f) because the capacitor and inductor make the voltages change with the change in current.
6
How do we model H? w We want a way to combine the effect of the components in terms of their influence on the amplitude and the phase. w We can only do this because the signals are sinusoids cycle in time derivatives and integrals are just phase shifts and amplitude changes
7
We will define Phasors w A phasor is a function of the amplitude and phase of a sinusoidal signal w Phasors allow us to manipulate sinusoids in terms of amplitude and phase changes. w Phasors are based on complex polar coordinates. w Using phasors and complex numbers we will be able to find transfer functions for circuits.
8
Review of Polar Coordinates point P is at ( r p cos p, r p sin p )
9
Review of Complex Numbers w z p is a single number represented by two numbers w z p has a “real” part (x p ) and an “imaginary” part (y p )
10
Complex Polar Coordinates z = x+jy where x is A cos and y is A sin t cycles once around the origin once for each cycle of the sinusoidal wave ( =2 f)
11
Now we can define Phasors w The real part is our signal. w The two parts allow us to determine the influence of the phase and amplitude changes mathematically. w After we manipulate the numbers, we discard the imaginary part.
12
The “V=IR” of Phasors w The influence of each component is given by Z, its complex impedance w Once we have Z, we can use phasors to analyze circuits in much the same way that we analyze resistive circuits – except we will be using the complex polar representation.
13
Magnitude and Phase w Phasors have a magnitude and a phase derived from polar coordinates rules.
14
Influence of Resistor on Circuit w Resistor modifies the amplitude of the signal by R w Resistor has no effect on the phase
15
Influence of Inductor on Circuit Inductor modifies the amplitude of the signal by L Inductor shifts the phase by + /2 Note: cos =sin( + /2)
16
Influence of Capacitor on Circuit Capacitor modifies the amplitude of the signal by 1/ C Capacitor shifts the phase by - /2
17
Understanding the influence of Phase
18
Complex Impedance w Z defines the influence of a component on the amplitude and phase of a circuit Resistors: Z R = R change the amplitude by R Capacitors: Z C =1/j C change the amplitude by 1/ C shift the phase -90 (1/j=-j) Inductors: Z L =j L change the amplitude by L shift the phase +90 (j)
19
AC Sweeps AC Source sweeps from 1Hz to 10K Hz Transient at 10 Hz Transient at 100 Hz Transient at 1k Hz
20
Notes on Logarithmic Scales
21
Capture/PSpice Notes w Showing the real and imaginary part of the signal in Capture: PSpice->Markers->Advanced ->Real Part of Voltage ->Imaginary Part of Voltage in PSpice: Add Trace real part: R( ) imaginary part: IMG( ) w Showing the phase of the signal in Capture: PSpice->Markers->Advanced->Phase of Voltage in PSPice: Add Trace phase: P( )
22
Part B w Phasors w Complex Transfer Functions w Filters
23
Definition of a Phasor w The real part is our signal. w The two parts allow us to determine the influence of the phase and amplitude changes mathematically. w After we manipulate the numbers, we discard the imaginary part.
24
Phasor References w http://ccrma- www.stanford.edu/~jos/filters/Phasor_Notat ion.html http://ccrma- www.stanford.edu/~jos/filters/Phasor_Notat ion.html w http://www.ligo.caltech.edu/~vsanni/ph3/Ex pACCircuits/ACCircuits.pdf http://www.ligo.caltech.edu/~vsanni/ph3/Ex pACCircuits/ACCircuits.pdf w http://ptolemy.eecs.berkeley.edu/eecs20/ber keley/phasors/demo/phasors.html http://ptolemy.eecs.berkeley.edu/eecs20/ber keley/phasors/demo/phasors.html
25
Phasor Applet
26
Adding Phasors & Other Applets
27
Magnitude and Phase w Phasors have a magnitude and a phase derived from polar coordinates rules.
28
Euler’s Formula
29
Manipulating Phasors (1) Note t is eliminated by the ratio This gives the phase change between signal 1 and signal 2
30
Manipulating Phasors (2)
31
Complex Transfer Functions w If we use phasors, we can define H for all circuits in this way. w If we use complex impedances, we can combine all components the way we combine resistors. H and V are now functions of j and
32
Complex Impedance w Z defines the influence of a component on the amplitude and phase of a circuit Resistors: Z R = R Capacitors: Z C =1/j C Inductors: Z L =j L w We can use the rules for resistors to analyze circuits with capacitors and inductors if we use phasors and complex impedance.
33
Simple Example
34
Simple Example (continued)
35
High and Low Pass Filters High Pass Filter H = 0 at 0 H = 1 at at c Low Pass Filter H = 1 at 0 H = 0 at at c c =2 f c fcfc fcfc
36
Corner Frequency w The corner frequency of an RC or RL circuit tells us where it transitions from low to high or visa versa. w We define it as the place where w For RC circuits: w For RL circuits:
37
Corner Frequency of our example
38
H(j ), c, and filters We can use the transfer function, H(j ), and the corner frequency, c, to easily determine the characteristics of a filter. If we consider the behavior of the transfer function as approaches 0 and infinity and look for when H nears 0 and 1, we can identify high and low pass filters. w The corner frequency gives us the point where the filter changes:
39
Taking limits At low frequencies, (ie. =10 -3 ), lowest power of dominates At high frequencies (ie. =10 +3 ), highest power of dominates
40
Taking limits -- Example w At low frequencies, (lowest power) w At high frequencies, (highest power)
41
Our example at low frequencies
42
Our example at high frequencies
43
Our example is a low pass filter What about the phase?
44
Our example has a phase shift
45
Part C w Using Transfer Functions w Capacitor Impedance Proof w More Filters w Transfer Functions of RLC Circuits
46
Using H to find V out
47
Simple Example (with numbers)
48
Capacitor Impedance Proof Prove:
49
Band Filters f0f0 f0f0 Band Pass Filter H = 0 at 0 H = 0 at at 0 =2 f 0 Band Reject Filter H = 1 at 0 H = 1 at at 0 =2 f 0
50
Resonant Frequency w The resonant frequency of an RLC circuit tells us where it reaches a maximum or minimum. w This can define the center of the band (on a band filter) or the location of the transition (on a high or low pass filter). w The equation for the resonant frequency of an RLC circuit is:
51
Another Example
52
At Very Low Frequencies At Very High Frequencies
53
At the Resonant Frequency if L=1mH, C=0.1uF and R=100 k rad/sec f k Hz
54
Our example is a low pass filter Phase = 0 at 0 = - at Magnitude = 1 at 0 = 0 at f k Hz Actual circuit resonance is only at the theoretical resonant frequency, f 0, when there is no resistance.
55
Part D w Equivalent Impedance w Transfer Functions of More Complex Circuits
56
Equivalent Impedance w Even though this filter has parallel components, we can still handle it. w We can combine complex impedances like resistors to find the equivalent impedance of the components combined.
57
Equivalent Impedance
58
Determine H
59
At Very Low Frequencies At Very High Frequencies
60
At the Resonant Frequency
61
Our example is a band pass filter Phase = 90 at 0 = 0 at = - at Magnitude = 0 at 0 H=1 at = 0 at ff
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.