Presentation is loading. Please wait.

Presentation is loading. Please wait.

Oscillation Neutrino Physics Reach at Neutrino Factories M. Lindner Technical University Munich.

Similar presentations


Presentation on theme: "Oscillation Neutrino Physics Reach at Neutrino Factories M. Lindner Technical University Munich."— Presentation transcript:

1 Oscillation Neutrino Physics Reach at Neutrino Factories M. Lindner Technical University Munich

2 M. LindnerNuFact042 Motivation for Precision surprise! how small? spectrum? Dirac and Majorana CP phases? neutrino masses are physics beyond the Standard Model new window to flavour problem – see-saw amplified! information complimentary to quarks:

3 M. LindnerNuFact043 Guessing the Neutrino Mass Spectrum quarks  hierarchical masses  neutrinos?  large mixings! inversely correlated hierarchy in M R ? non-hierarchical, type II see-saw,.... ? Quarks and charged leptons: m D ~ H n ; n = 0,1,2  H > 20... 200 Neutrinos: m ~ H n  1< H < 10 See-saw: 1 20 ? >20 m  = -m D T M R -1 m D

4 M. LindnerNuFact044 The Value of Precision for  13 for example: sin 2 2  13 < 0.01  physics question: small  13  numerical coincidence  systematic (symmetry,...) how small? precision! models for masses & mixings input: Known masses & mixings  distribution of  13 „predictions“  13 often close to experimental bounds  motivates new experiments   13 controls 3-flavour effects like CP-violation

5 M. LindnerNuFact045 mass spectrum, mixings, CP-phases, LVF, 0 2  decay,... Standard Model extensionsflavour symmetries leptogenesis mechanisms supernovae nucleosynthesis structure formation... renormalization group The Interplay of different Topics  -parameters extremely valuable  long term: most precise flavour info

6 M. LindnerNuFact046 x. The Future of Oscillations

7 M. LindnerNuFact047 2 flavour approximation: P ab = sin 2 (2  sin 2 (  m 2 L/4E) P aa = 1 - P ab Oscillation Channels MSW + parameter mapping

8 M. LindnerNuFact048 Analytical Description  analytic discussion / full numerical simulations  degeneracies, correlations,...  (sin 2 2  13 ) eff

9 M. LindnerNuFact049 running: K2K establish / test atm. osc. with beams construction: MINOS (2005) ~ 10% for  m 31 2,  23, improve  13 CNGS: ICARUS & OPERA (2006) approval: T2K (JHF-SK) (2008) few% for  m 31 2,  23, improve  13 LOIs: NO A (NuMI-OA) (200x) H2K (JHF-HK) (201x) % for  m 31 2,  23,   13, CP, sgn(  m 2 ) long term:  beams, neutrino factory,... (201x)  precision.....muon collider.... every stage is a necessary prerequisit for the next continuous line of improvements for beams, detectors, physics!. Long Baseline: Projects and Plans (partly)  precision neutrino physics

10 M. LindnerNuFact0410 Beams conventional beams / superbeams  -beams neutrino factories other: laser driven?...?

11 M. LindnerNuFact0411 Determination of the Physics Potential select a setup (beam, detector, baseline,...) take „most realistic“ parameters  best guess! simulate all relevant aspects as good as possible  GLoBES determine the potential: „true“  fitted parameters consider other options, time, cost, improvements,... compare only realistic simulations  discuss the reliability of the input (assumptions)  think of improvements  R&D in all directions until decisions must be made

12 M. LindnerNuFact0412 Sensitivitiy Plots limit for (sin 2 2  13 ) eff sin 2 2  13 systematics correlationsdegeneracies statistical limit (all parameters fixed) limit for sin 2 2  13 from *THIS* experiment only precise knowledge of some parameter combination = precision of the experiment synergies = combine with other experiments  gain more than statistics

13 M. LindnerNuFact0413.  13 Sensitiviy: Comparison of the coming Generation

14 M. LindnerNuFact0414 Adding a new reactor experiment identical detectors  many errors cancel

15 M. LindnerNuFact0415.  13 Sensitiviy: Comparison of the next Generation Huber, ML, Rolinec, Schwetz, Winter

16 M. LindnerNuFact0416 Leptonic CP-Violation: Best Case today: sin 2 2  13 < 0.2 assume: sin 2 2  13 = 0.1 and combine: T2K + NO A + Reactor  limits or signs of leptonic CP violation Huber, ML, Rolinec, Schwetz, Winter

17 M. LindnerNuFact0417 Neutrino Factory: I & II define benchmark neutrino factories: magnetized iron detector  wrong sign  ‘s baseline 3000km P(MW)  ‘s/year T +T (y) M(kt) -------------------------------------------------------------------------------- Neutrino factory I: 0.75 10 20 5 10 Neutrino factroy II: 4.00 5.3*10 20 8 50 _ simulations of various options: Barger, Geer, Raja, Whisnant, Marfatia,... Cervera, Donini, Gavela, Gomez-Cadenaz, Hernandez, Mena, Rigolin,... Bueno, Campanelli, Rubbia,... Minakata, Yasuda,... Freund, Huber, ML, Winter,......

18 M. LindnerNuFact0418 different sensitivity reductions by systematics correlations & degeneracies lead to severe sensitivity reductions break C&D by combining different experiments of comparable potential  T2K  NO A

19 M. LindnerNuFact0419.

20 M. LindnerNuFact0420 Measurement of CP Violation

21 M. LindnerNuFact0421 Various Potential Options Initially rate driven  improve by  combination of different E and/or L or „magic baseline“  combination of different channels or experiments  use energy spectrum superbeams: E ≈ GeV  large low Z sampling calorimeters ≈ 50 kt superbeams,  -beams: E  ≈GeV  huge Cerenkov detectors ≈ 1000 t  huge liquid Ar detectors ≈ 100 kt  huge scintillator detectors ≈ 30 kt neutrino factory: E ≈20-50 GeV  large magnetized iron Calorimeters ≈ 40kt  large magnetized liquid Ar detectors ≈20kt  large OPERA-like emulsion detectors ≈5kt laser driven acceleration, …

22 M. LindnerNuFact0422 Combining: Silver Channels Donini, Meloni, Migliozzi Autiero, et al. golden channel: wrong sign  ‘s silver channel :  ‘s  different oscillation probabilities  break degeneracies!

23 M. LindnerNuFact0423 Energy Resolution  =+  /2  =0  = -  /2 rate based degeneracies have different energy spectra 730km  use energy resolution to break degeneracies A. Rubbia

24 M. LindnerNuFact0424 A Powerful Simulation Tool General Long Baseline Experiment Simulator P. Huber, ML, W. Winter  see parallel talk! http://www.ph.tum.de/~globes hep-ph/0407xxx Release: Aug. 1, 2004  C-based simulation software (GPL – free, for Unix systems)  extensive documentation & examples  3 phase approach: experiment definition with AEDL ( Abstract Experiment Definition Language ) simulation of an experiment  3- oscillations; scan „true values“ analysis  event distriutions,...., sensitivities,...

25 M. LindnerNuFact0425 Abstract Experiment Definition Language (AEDL) predefined AEDL files for a number of experiments allows easy modifications of „default“ experiments

26 M. LindnerNuFact0426 AEDL Description of a Neutrino Factory !%GLoBES /* beam */ flux(#mu_plus)< @builtin = 1 @parent_energy = 50.0 @stored_muons = 5.33e+20 @time = 8.0 > $target_mass = 50 $bins = 20 $emin = 4.0 $emax = 50.0 /* cross section */ cross(#CC)< @cross_file = XCC.dat > /* baseline */ $baseline = 3000.0 $densitytab = {3.5} $lengthtab = {3000.0} $density_error = 0.05 /* energy resolution */ energy(#MINOS)< @type = 1 @sigma_e = {0.15,0.0,0.0} /* channels */ channel(#appearance)< @channel = #mu_plus: +: electron: muon: #CC: #MINOS > channel(#disappearance)< @channel = #mu_plus: -: muon: muon: #CC: #MINOS > /* rules */ rule(#rule1)< @signal = 0.45 @ #appearance @signalerror = 0.001 : 0.0001 @background = 1.0e-05 @ #disappearance @backgroundcenter = 1 : 0.0 @backgrounderror = 0.05 : 0.0001 @errordim = 0 @energy_window = 4.0 : 50.0 >

27 M. LindnerNuFact0427 GLoBES Simulations sin 2   

28 M. LindnerNuFact0428 MINOS, ICARUS and OPERA - improve leading oscillation parameters; should improve sin 2 2  13 a little T2K, NO A and new reactor experiments - further improved leading oscillation parameters - will improve sin 2 2  13 by about one order of magnitude - with luck: sign(  m 2 ) or even CP phase H2K,  -beams, neutrino factory - can do all unless sin 2 2  13 is extremely tiny; in any case precision -physics!  very precise 3- oscillation parameters  sin 2 2  13, sign(  m 2 ) and CP phase should be measured  unique impact on model building! R&D for  -beams, neutrino factories...  realistic parameters  simulate & compare  GLoBES http://www.ph.tum.de/~globes and hep-ph/0407xxx Conclusions


Download ppt "Oscillation Neutrino Physics Reach at Neutrino Factories M. Lindner Technical University Munich."

Similar presentations


Ads by Google