Download presentation
Presentation is loading. Please wait.
Published byFrank Simmons Modified over 9 years ago
1
Internal sensors Josep Amat and Alícia Casals Automatic Control and Computer Engineering Department
2
Program Chapter 1. Introduction Chapter 2. Robot Morphology Chapter 3. Control Chapter 4. Robot programming Chapter 5. Perception Chapter 6. Mobile robots. Architecture, components and characteristics Chapter 7. Robotics applications. Robotization
3
2.1 – Mechanical Structures. Classical Architectures. 2.2 – Characteristics of a Manipulator. Definitions. 2.3 - Actuators. Pneumatic, Hydraulic and Electrical. 2.4 – Movement transmission systems: Gearboxes, movement transmission and conversion. 2.5 – Robot internal sensors. Position sensors, speed and acceleration. 2.6 – End Effectors. Chapter 2. Robot Morphology
4
User Components of a Robot Control Unit Programming External Sensors Environment Internal Sensors Actuators Mechanical Structure Net
5
Internal sensors Actuators Mechanical structure Detectors Position sensors Mechanical:
6
Internal sensors Actuators Mechanical structure Detectors Position sensors Electromagnetic: Detection from the variations of the oscillation conditions of an L – C sensor circuit
7
Internal sensors Actuators Mechanical structure Detectors Position sensors Optical: From the interruption of a light beam, or reflection.
8
Types of sensors Angular Linear
9
Resistive (Potentiometers) Angular Analog Digital R1 R2 Vcc 0 V R V = Vcc R1 R R V = Vcc R = Vcc Types of sensors
10
Resistive (Potenciometers) Angular Inductive ( Resolver ) Analog Digital V e = A sin ( t) V e = A sin( t ) cos V e = A sin( t ) sin A is obtained through the lecture in a look up table of arcsin and arccos Types of sensors
11
V e = V sin ( t) S 1 = V sin( t ) cos S 2 = V sin( t ) sin A S1S1 S2S2 S 1 = V cos S 2 = V sin e Possibility of obtaining the value of by means of “tracking” A/D D/A controler Low resolution conversions High resolution conversions XX XX
12
Resistive (Potentiometers) Angular Inductive ( Resolver ) Absolute Incremental Analog Digital Types of sensors
13
Optical Encoder Absolute 2 paths 4 divisions Fotoelectric sensor n paths 2 n divisions n optical barriers
14
Commercially 10 bits 1024 div. Resol. 0.35º 12 bits 4096 div. Resol. 0.088º 14 bits 16384 div. Resol. 0.022º Encoder diameters: de 50 a 175 mm Elimination of the reading ambiguity using the Gray code Ambiguity when reading the natural binary code
15
Example of a disc with the Gray code Example of an angular encoder
16
Resistive (Potentiometers) Angular Inductive ( Resolver ) Absolute Incremental Types of Sensors Analog Digital
17
Gray code Commercially 10 bits 1024 div. Resol. 0.35º 12 bits 4096 div. Resol. 0.088º 14 bits 16384 div. Resol. 0.022º 1 2 3 4 5 6 7 8 9 10 11 12 Signal obtained after displacing the sensor over a coded disc
18
Gray code Commercially 10 bits 1024 div. Resol. 0.35º 12 bits 4096 div. Resol. 0.088º 14 bits 16384 div. Resol. 0.022º Possibility of detecting the counting sense using two sensors
19
Incremental Optical Encoder ABRABR 1 mark = 4 divisions
20
0 1 200 x 4 = 800 P Q P Q
22
ss 120 cm. Computing resolution = 60º l = 2 1200 60 360 q = 2 10 60 360 l = 1256 mm. = q = 170,6 = r r = 1256 mm. 170,6 = 7,3 mm. U sing a a 10 bits encoder directly coupled to the motor axis
23
1 : 1 Measuring strategies Arm 0 360º 0 Encoder Absolute Incremental d n-1.... d o Counter d n-1.... d o Code
24
1 : n Measuring strategies Arm 0 360º 0 Encoder Absolute Incremental d n-1.... d o Counter d n-1.... d o Code n = 360º
25
1 : n Measuring strategies Arm 0 360º 0 Encoder n = m 360º 0 360º m · · · m = 2 m = 1 Absolute + Inc. Incremental d n+p-1.. d n-1 · · · · d o Code Counter d n+p-1.. d n-1 · · · ·d o Encoder coupled to the arm with a transmission ratio: m x n
26
120 cm. Computing resolution = 60º l = 1256 mm. q = 8192 = r r = 1256 mm. 8192 = 0,15 mm. q = 8 · 2 10 x 6 x 8 Using a 10 bits encoder coupled with a 1:64 transmission ratio
27
l = 1256 mm. 200 x 1024 = 204.800 r = 1256 mm. 204.800 = 0,006 mm. r < 0,01 mm. Sinusoidal light obtained from Moore interference With a 10 bits A/D converter r’ = r/1024 0 1 2 3 · · · 199 200
28
Types of sensors Resistive (Potentiometers) Angular Inductive ( Resolver ) Incremental Absolute Resistive Inductive ( Inductosyn ) Linear LVDT Optical rule Analog Digital Analog Digital
29
R Sensing with a linear potentiometer
30
Types of sensors Resistive (Potentiometers) Angular Inductive ( Resolver ) Incremental Absolute Resistive Inductive ( Inductosyn ) Linear LVDT Optical rule Analog Digital Analog Digital R
31
Inductosyn sensor With two secondary sensors shifted 90º, the resolution is: 0,2 / 2 8 < 0.001 mm * 0,2 mm * With an analog interpolation using a 8 bits ADC
32
Types of sensors Resistive (Potentiometers) Angular Inductive ( Resolver ) Incremental Absolute Resistive Inductive ( Inductosyn ) Linear LVDT Optical rule Analog Digital Analog Digital
33
LVDT = Linear Voltage Differential Transformed) LVDT Linear sensing displacements
34
V1V1 V2V2 V 1 - V 2 V1V1 V2V2 v LVDT Linear sensing displacements
35
Types of sensors Resistive (Potentiometers) Angular Inductive ( Resolver ) Incremental Absolute Resistive Inductive ( Inductosyn ) Linear LVDT Optical rule Analog Digital Analog Digital
36
Head reader Incremental optical rule Absolute optical rule
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.