Download presentation
Presentation is loading. Please wait.
Published byBrent Howard Modified over 9 years ago
1
Progress Towards Obtaining Lineshape Parameters Using Chirped Pulse THz Spectroscopy Eyal Gerecht, Kevin O. Douglass, David F. Plusquellic National Institute of Standards and Technology Optical Technology Division, Gaithersburg, MD
2
Multi-Component Gas Monitor GHGs, VOCs, or breath analysis Formaldehyde CO Methanol Acetone Ethanol CO 2 ( 18 O) N2ON2O NO 0.8050.875 THz L.S. Rothman et al, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005). H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," J. Quant. Spectrosc. Radiat. Transf. 60, 883-890 (1998).
3
Spectral Line Shapes + = ReIm Mag Resulting from FFT of a damped oscillator DispersionAbsorption FFT
4
Spectral Line Shapes Resulting from FFT of a damped oscillator ● Higher resolution Improved spectral discrimination ● measurement of lineshape parameters
5
Spectral Line Shapes: Issues Recorded spectra typically appear as a linear combination Re and Im components Re(F(ω)) = cos ϕ A(ω) + sin ϕ D(ω) Im(F(ω)) = -sin ϕ A(ω) + cos ϕ D(ω) The pure Absorption and Dispersion spectra can be determined with the correct phase angle A(ω) = cos ϕ Re(F(ω)) - sin ϕ Im(F(ω)) = Im(F(ω) exp(-i ϕ)) D(ω) = -sin ϕ Re(F(ω)) + cos ϕ Im(F(ω)) = Re (F(ω) exp(-i ϕ))
6
Determining the phase angle over the Full Spectrum Time delay in acquisition leads to a frequency dependent phase shift (Shift Theorem) ϕ( ω ) = ω t delay In NMR zero order term sets initial phase and the linear term accounts for acquisition delay ϕ( ω ) = ϕ 0 + t delay ( ω – ω a ) Need to account for quadratic phase accumulation due to chirped pulse excitation
7
Broad bandwidth Phase Correction Approaches in the Past: FT-ICR 1.Xian, F. et al Anal. Chem. 2010, 82, 8807 – 8812 2.Beu,S. C., Anal. Chem. 2004, 76, 5756 – 5761 3.Qi, Y, J. Am. Soc. Mass Spectrom. 2011, 158 164 4.Brouwer, H. de, JMR 201 (2009) 230–238
8
Broad bandwidth Phase Correction Current Approach Challenges rapidly accumulate phase ϕ(ω) = ϕ 0 + t delay (ω – ω a ) + ϕ chirp Obtained by fitting transmitted chirped pulse phase angle Estimate and vary t delay and ϕ 0 until phase is aligned simplify to NMR approach
9
x48 White Cell 9 GHz Source Mix AMC x48 YIG AWG 12GS/s Chirped-Pulse THz Spectrometer E. Gerecht, K.O. Douglass, D.F. Plusquellic, Optics Express, April 22, 2011, Vol. 19, Issue 9, pp. 8973-8984 (2011),
10
Time (ns) 0 100 Frequency (GHz) 0 12 25 ns - 10 GHz Chirped THz pulse 550 – 560 GHz
11
Direct Absorption of a 5 Component Gas Mix L.S. Rothman et al, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005). H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," J. Quant. Spectrosc. Radiat. Transf. 60, 883-890 (1998).
12
Absorption Data Results Many improvements in the pipeline
13
Magnitude Spectrum of FID 0.54600 0.55666 THz FID Signal (a.u.) 0.55133 0.55399 0.54866 N2ON2O OCS EtOH MeOH Acetone H2OH2O 100,000:1 x500 L.S. Rothman et al, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005). H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," J. Quant. Spectrosc. Radiat. Transf. 60, 883-890 (1998). 10.6 GHz in 500 nsec – 80K averages in 60 sec 5 Component Gas Mix
14
Phase Correcting a Single Peak ϕ 0 = 147⁰ A(ω)=Im(F(ω) exp(-i ϕ 0 )) Fit Results (MHz) wG1.05626+/- 0.00149 wL0.06852 +/- 0.00208 HITRAN (MHz) wG 0.87 wL 0.8 10 mTorr 1% OCS in Ne L.S. Rothman et al, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
15
Fit to Quadratic Phase Change
16
Magnitude vs. Im Component ϕ(ω) = ϕ 0 + t delay (ω – ω a ) + ϕ chirp
17
Magnitude vs. Im Component
18
779.760869.760 ν / GHz Extending to Higher Bandwidths Justin Neil RC06 90 GHz FID near 850 GHz MeOH -1.2 mTorr Pure 2 ms acquisition time L.S. Rothman et al, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
19
Conclusions Obtain lineshapes that are in good agreement with HITRAN from direct absorption measurements Lineshapes measurements from FID are possible and demonstrated for a single transition of OCS at 546.859 GHz Need to implement automated algorithms developed for NMR to phase the broadband spectrum
20
Acknowledgements Virginia L. Perkey – SURF student Eric M. Vess - SURF student Tektronix – equipment loan Upper Atmospheric Research Program of the National Aeronautics and Space Administration (NNH09AK47I) NIST National Research Council Program Post Doctoral Research Opportunities http://www.nist.gov/pml/div685/grp08/biophysics-group-research-opportunities.cfm
21
Spectral Line Shapes: Issues Recorded spectra typically appear as a linear combination Re and Im components Re(F(ω)) = cos ϕ A(ω) + sin ϕ D(ω) Im(F(ω)) = -sin ϕ A(ω) + cos ϕ D(ω) The pure Absorption and Dispersion spectra can be determined with the correct phase angle A(ω) = cos ϕ Re(F(ω)) - sin ϕ Im(F(ω)) D(ω)= -sin ϕ Re(F(ω)) + cos ϕ Im(F(ω))
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.