Download presentation
Presentation is loading. Please wait.
Published byChester Haynes Modified over 9 years ago
1
Lecture 4 CMOS Inverter
2
References Section 4.2,4.3,4.6 (Hodges)
3
5 Regions of Operations I: N(off), P(lin) As you increase Vin from 0 V to 1.8 V, you progress from region I to region V.
4
Current Draw of a CMOS Inverter
5
Ideal Voltage Transfer Characteristics of an Inverter Large Input Range/Small Output Range →Noise Immunity. Range: the voltage interval over which the signal is either a 1 or a 0.
6
Practical VTC of an Inverter Gain=ΔV out /ΔV in Not GND V S is defined by V out =V in
7
Effect of Input Noise on the Output
8
Noise Margin Output of the Driving Stage Input of the Receiving Stage
9
Unity Gain Noise Margin Definitions NM L =V IL -V OL NM H =V OH -V IH If V in >V IL, the gain exceeds unity and the output begins to drop significantly.
10
General Analysis Methodology Region I: N-OFF, P-Triode Region II: IDN(Sat)=IDP(Triode)→V IL (Cumbersome to calculate analytically) Region III: IDN(Sat)=IDP(Sat)→V S (Switching voltage) Region IV: IDN(Triode)=IDP(Sat) →V IH (Cumbersome to calculate analytically) Region V: N-Triode, P-OFF
11
Current Consumed by a CMOS Inverter
12
TSMC 0.18 um Example W N /L N =200nm/200nm W P /L P =200nm/200nm
13
Computation of V S See Derivation in the Handout Assume: – 0.18 um TSMC CMOS – W N /L N =200nm/200nm; W P /L P =200nm/200nm – E CN L N =4.8V; E CP L P =1.2V Hand Analysis using (EQ 4.15 /EQ 4.14): 0.76V Spice: 0.748 V
14
VS of TSMC 0.18 um Assume: 0.18 um TSMC CMOS W N /L N =200nm/200nm W P /L P =200nm/200nm
15
Adjust V S Knob: – χ as defined in EQ. 4.15 – Increase W N L P /L N W P → Decreased V S. – Decrease W N L P /L N W P → Increased V S.
16
Increase W P to adjust V S W N /L N =200nm/200nm W P /L P =200nm/200nm W N /L N =200nm/200nm W P /L P =460nm/200nm
17
Noise Margin V OH =VDD V OL =0 V Determine V IL and V IH from the -1 slope.
18
V IL W N /L N =200nm/200nm W P /L P =460nm/200nm
19
V IH W N /L N =200nm/200nm W P /L P =460nm/200nm
20
NM Calculation Process: TSMC 0.18 um – W N /L N =200nm/200nm; W P /L P =460nm/200nm V S =0.809 V V OH =1.8 V V OL =0 V V IL =0.66 V V IH =0.905V NM L =V IL -V OL =0.66 V-0V=0.66V NM H =V OH -V IH =1.8 V-0.905V=0.895 V
21
50% Propagation Delay
22
Propagation Delay of CMOS Inverter 50% Propgation Dealay: 0.69 R eff C L
23
CMOS Inverter Calculation
24
t PHL Δt=C L ΔV/(I DS ) – ΔV=V DD /2 (from V DD to V DD /2) – I DS NMOS is in Saturation (Hand Out) t pHL =0.69R effn C L t pHL =C L ΔV/(I DSAT ) R effn =(V DD /2)/(0.69I DSAT )
25
t PLH Δt=C L ΔV/(I DS ) – ΔV=V DD /2 (from 0 to V DD /2) – I DS PMOS is in Saturation (Hand Out) t pLH =0.69R effp C L t pLH =C L ΔV/(I DSAT ) R effp =(V DD /2)/(0.69I DSAT )
26
R eff Comparison for 0.18 um Process 0.18 um NMOS0.18 um PMOS Reff,calc (kOhm/SQ)11.91128.026 Reff,list (kOhm/SQ)12.530 Reff: unit is Kohm/SQ R N =R effN (L N /W N ) R P =R effP (L P /W P )
27
Design Example Design Constraints: – t PHL <50 pS, t PLH <50 pS – Load Capacitor: 50 fF – Use minimum W and L to attain the specs. Determine W/L for PMOS and NMOS Method: – t PHL =t PLH =50 pS=0.7R eff C L – Use R effn =12.5 KOhm/SQ and R effp =30 KOhm/SQ – Reff=1.4 Kohm – Reff=R effn (L n /W n ); Reff=R effp (L p /W p ) – Use minimum L n. – W n =1.784 um; W p =4.284 um
28
tPLH
29
t PHL
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.