Download presentation
Presentation is loading. Please wait.
Published byMarjory Harrell Modified over 9 years ago
1
The XMASS 800kg Experiment Jing LIU IPMU, Univ. of Tokyo TAUP2011, Munich XMASS collaboration: Kamioka Observatory, ICRR, Univ. of Tokyo : Y. Suzuki, M. Nakahata, S. Moriyama, M. Yamashita, Y. Kishimoto, Y. Koshio, A. Takeda, K. Abe, H. Sekiya, H. Ogawa, K. Kobayashi, K. Hiraide, A. Shinozaki, S. Hirano, D. Umemoto, O. Takachio, K. Hieda IPMU, University of Tokyo : K. Martens, J.Liu Kobe University: Y. Takeuchi, K. Otsuka, K. Hosokawa, A. Murata Tokai University: K. Nishijima, D. Motoki, F. Kusaba Gifu University : S. Tasaka Yokohama National University : S. Nakamura, I. Murayama, K. Fujii Miyagi University of Education : Y. Fukuda STEL, Nagoya University : Y. Itow, K. Masuda, H. Uchida, Y. Nishitani, H. Takiya Sejong University : Y.D. Kim KRISS: Y.H. Kim, M.K. Lee, K. B. Lee, J.S. Lee
2
The XMASS Experiment XMASS 800kgJing LIU @ TAUP20112 Xenon MASSive detector for Solar neutrino (pp/ 7 Be) Xenon neutrino MASS detector (double beta decay) Xenon detector for weakly interacting MASSive Particles ~100 kg LXe prototype ~800 kg LXe direct dark matter search ~26 ton LXe Multi-purpose LXe (Liquid Xenon) surrounded by PMTs (Photomultiplier Tubes) recording scintillation lights generated by nuclear or electronic recoils in LXe PMT LXe inside
3
The XMASS Experiment XMASS 800kgJing LIU @ TAUP20113 Xenon MASSive detector for Solar neutrino (pp/ 7 Be) Xenon neutrino MASS detector (double beta decay) Xenon detector for weakly interacting MASSive Particles ~100 kg LXe prototype ~800 kg LXe direct dark matter search ~26 ton LXe Multi-purpose LXe (Liquid Xenon) surrounded by PMTs (Photomultiplier Tubes) recording scintillation lights generated by nuclear or electronic recoils in LXe PMT LXe inside , n, ,… or ? PMT LXe scintillation
4
The XMASS Experiment XMASS 800kgJing LIU @ TAUP20114 Xenon MASSive detector for Solar neutrino (pp/ 7 Be) Xenon neutrino MASS detector (double beta decay) Xenon detector for weakly interacting MASSive Particles ~100 kg LXe prototype ~800 kg LXe direct dark matter search ~26 ton LXe Multi-purpose LXe (Liquid Xenon) surrounded by PMTs (Photomultiplier Tubes) recording scintillation lights generated by nuclear or electronic recoils in LXe PMT LXe inside PMT LXe
5
The XMASS Experiment XMASS 800kgJing LIU @ TAUP20115 Xenon MASSive detector for Solar neutrino (pp/ 7 Be) Xenon neutrino MASS detector (double beta decay) Xenon detector for weakly interacting MASSive Particles ~100 kg LXe prototype ~800 kg LXe direct dark matter search ~26 ton LXe Multi-purpose LXe (Liquid Xenon) surrounded by PMTs (Photomultiplier Tubes) recording scintillation lights generated by nuclear or electronic recoils in LXe PMT LXe inside
6
The XMASS Experiment XMASS 800kgJing LIU @ TAUP20116 Xenon MASSive detector for Solar neutrino (pp/ 7 Be) Xenon neutrino MASS detector (double beta decay) Xenon detector for weakly interacting MASSive Particles ~100 kg LXe prototype ~800 kg LXe direct dark matter search ~26 ton LXe Multi-purpose LXe (Liquid Xenon) surrounded by PMTs (Photomultiplier Tubes) recording scintillation lights generated by nuclear or electronic recoils in LXe PMT LXe inside
7
The XMASS Experiment XMASS 800kgJing LIU @ TAUP20117 Xenon MASSive detector for Solar neutrino (pp/ 7 Be) Xenon neutrino MASS detector (double beta decay) Xenon detector for weakly interacting MASSive Particles ~100 kg LXe prototype ~800 kg LXe direct dark matter search ~26 ton LXe Multi-purpose LXe (Liquid Xenon) surrounded by PMTs (Photomultiplier Tubes) recording scintillation lights generated by nuclear or electronic recoils in LXe PMT LXe inside
8
Structure of XMASS 800kg detector XMASS 800kgJing LIU @ TAUP20118 PMT
9
Structure of XMASS 800kg detector XMASS 800kgJing LIU @ TAUP20119 PMT Pentakis dodecahedron ~10 PMTs in one triangle 642 PMTs in total ~0.8 meter PMT photo-cathodes cover ~62% inner surface
10
Reconstruct interaction point from PMT hit pattern XMASS 800kgJing LIU @ TAUP201110 Colored photo cathodes indicating number of p.e. (photoelectrons) recorded by PMTs Interaction point (vertex) can be reconstructed from the PMT hit pattern.
11
LXe self-shielding XMASS 800kgJing LIU @ TAUP201111 Simulation: into LXe water LXe E [keV] Attenuation length of [cm]
12
Where is it? XMASS 800kgJing LIU @ TAUP201112 1000 m rock overburden (2700 m water equiv.): Muon: 6.0x10 -8 /cm -2 /s/sr Neutron: 1.2x10 -6 /cm -2 /s 360m above the sea Horizontal access: 15 minutes drive from office, too easy to get in! No excuse to avoid 24-hour shift Kamioka underground observatory
13
XMASS 800kgJing LIU @ TAUP201113 New experimental hall, Aug. 2008 15 meter 20 meter
14
XMASS 800kgJing LIU @ TAUP201114 water tank, Nov. 2008 10 m x 10 m
15
XMASS 800kgJing LIU @ TAUP201115 Frame of clean room in water tank, Mar. 2008
16
XMASS 800kgJing LIU @ TAUP201116 PMT mounting in clean room, Dec. 2009
17
XMASS 800kgJing LIU @ TAUP201117 PMT mounting finished, Feb. 2010
18
XMASS 800kgJing LIU @ TAUP201118 Water filling, Sep. 2010
19
XMASS 800kgJing LIU @ TAUP201119 Commissioning started, Nov. 2010
20
Scintillation light yield :: calibration system XMASS 800kgJing LIU @ TAUP201120 Top PMT can be pulled out Source changed here Z position of source is controlled by a motor on top at <1 mm accuracy x y z 57 Co, 241 Am, 109 Cd, 55 Fe, 137 Cs 4mm 0.15mm for 57 Co
21
Scintillation light yield: 15.9 1.2 p.e./keV ( 57 Co at center) XMASS 800kgJing LIU @ TAUP201121 Data MC 122 keV 136 keV 59.3 keV (W) Number of photoelectrons Arbitrary unit
22
Position & energy resolution (122keV from 57 Co) Data Reconstructed vertices for various source positions Position resolution (RMS): 1.4 cm @ z = 0 cm 1.0 cm @ z = 20 cm Reconstructed energy [keV] Arbitrary unit Data MC 122 keV 136 keV 59.3 keV (W) RMS ~4% XMASS 800kgJing LIU @ TAUP201122 y [cm] z [cm] Data MC Arbitrary unit
23
Background under control? External – Comic ray: underground, muon veto – Ambient gamma & neutron: water shielding – PMT radiation: LXe self-shielding Internal – Rn: material screening, clean room filled with Rn free air – Kr: distillation XMASS 800kgJing LIU @ TAUP201123
24
Xe water X [cm] y [cm] Ambient and n: pure water tank, ~10 meter XMASS 800kgJing LIU @ TAUP201124 Pure water tank (large enough for 26 ton LXe) equipped with 20 inch PMTs on the wall as active muon veto and passive ambient and n shielding 20 inch PMTs Water tanks LXe sphere 10 7 neutrons, simulation << from PMT, n<<10 -4 /d/kg
25
LXe copper cryostat Calibration pipe n n PMT radiation: Ultra low background PMTs XMASS 800kgJing LIU @ TAUP201125 Neutron: <1.2x10 -5 dru @5-10 keV
26
PMT & PMT holder radiation: LXe self-shielding XMASS 800kgJing LIU @ TAUP201126 Energy [keV] Counts [dru ] Simulation: into LXe fiducial volume: r<20cm, 100 kg LXe BG/PMT [mBq] U chain 0.70 0.28 Th chain 1.51 0.31 40 K< 5.10 60 Co 2.92 0.16
27
85 Kr (Q =687keV) : distillation XMASS 800kgJing LIU @ TAUP201127 Kr LXe intake LXe outlet Gas Kr outlet K. Abe et al. for XMASS collab., Astropart. Phys. 31 (2009) 290 Kr can be boiled out from LXe 0.1 ppm ~1ppt (~1 ton in 10 days)
28
Kr concentration XMASS 800kgJing LIU @ TAUP201128 Xenon sample bg sample 1 bg sample 2 Kr concentration: < 2.7 ppt (90% C.L.) Measured by gas chromatography + API mass spectrometer
29
222 Rn XMASS 800kgJing LIU @ TAUP201129 p0 * exp(-t/ ) + p1, : decay constant Time difference [ s] 1 st event ( 214 Bi ) 2 nd event ( 214 Po ) Tail due to saturation 214 Po decays with 164 s half life. It can be identified by time coincidence between two consecutive events: 1. 214 Bi decays into 214 Po 2. 214 Po decays into 210 Pb x10 3 Number of photoelectrons Events 8.2 0.5 mBq Events
30
220 Rn XMASS 800kgJing LIU @ TAUP201130 p0 * exp(-t/ ) + p1, : decay constant 216 Po decays with 140 ms half life Time difference [ms] Events x10 3 Number of photoelectrons 1 st event 2 nd event <0.28 mBq (90%C.L.)
31
Target sensitivity of WIMP-nucleon XS (spin independent) XMASS 800kgJing LIU @ TAUP201131 XENON100 CDMSII XMASS 1yr Expected energy spectrum assuming 1 year exposure flat background (10 -4 dru) = 10 -44 cm 2 M WIMP = 50 GeV L eff = 0.2 Black: signal + background Red: background (10 -4 dru)
32
Conclusion The XMASS 800kg detector is a single phase LXe scintillation detector Construction of the 800kg detector finished last winter Commissioning runs are on going to confirm the detector performance and low background properties – Energy resolution and vertex resolution were as expected. ~1cm position resolution and ~4% energy resolution for 122 keV . – Radon and Kr background are close to the target values. The physics results are on the way XMASS 800kgJing LIU @ TAUP201132
33
XMASS 800kgJing LIU @ TAUP201133
34
PMT holer made of OFHC copper
35
3 Steps in reconstruction Step1 – Search the map grid where likelihood becomes smallest. Step2 – By linear interpolation, calculate likelihood at finer “interpolated grid” in Cartesian coordinate. – 1.5cm interval, 5x5x5 finer grid points are evaluated. Result grid of step1 1.5cm PMT pe L) (pe+1) )exp( Log() Ln likelihood is calculated from the expected pe and observed pe. Using gamma distribution. Treatment of saturated PMT, cumulative probability of gamma distribution. z x y
39
Integral spectrum Assumption 1x10^-44 cm^2 100 kg X 1 year exposure WIMP Mass [GeV] 501001000 No. of Events 26376 25 keVr(5keVee) energy threshold 100kg x 1 year
44
XMASS 800kgJing LIU @ TAUP201144
45
XMASS 800kgJing LIU @ TAUP201145
46
XMASS 800kgJing LIU @ TAUP201146
47
XMASS 800kgJing LIU @ TAUP201147
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.