Presentation is loading. Please wait.

Presentation is loading. Please wait.

Possible disk emission in the BLR of AGN Edi Bon  Astronomical Observatory Belgrade, Serbia L. Č. Popović 1, D. Ilić 2 1- Astronomical.

Similar presentations


Presentation on theme: "Possible disk emission in the BLR of AGN Edi Bon  Astronomical Observatory Belgrade, Serbia L. Č. Popović 1, D. Ilić 2 1- Astronomical."— Presentation transcript:

1 Possible disk emission in the BLR of AGN Edi Bon  Astronomical Observatory Belgrade, Serbia ebon@aob.bg.ac.yu L. Č. Popović 1, D. Ilić 2 1- Astronomical Observatory Belgrade, Serbia 2- University of Belgrade, Faculty of Mathematics Department of Astronomy

2 Intro: I – Here we investigated the structure of broad emission profiles (Hα, Hβ…) II – To explain the structure of these profiles we simplified the things using “two-component model”, with assumption that the wings of the lines originated in the disk, and a spherical region that surrounds the disk contributes to the core of the lines. III – we applied this model to the profiles of 14 single-peaked AGN (that we observed at INT), that already had a proof of the disk existence in X domain of spectra IV – the fitting to this model allowed as to do only ruff estimation of parameters, because of luck of shoulders or bumps and the large number of parameters of our model V – in order to determine better fit, we simulated our model for different parameters so we could estimate influence of the disk flux in the profiles

3 Unification Scheme of AGN

4 Grand Unification Scheme

5

6 Unification Scheme of AGN BLR BAL Torus masers Emmering, Blandford & Shlosman 1992 Torus – samo oblast u vetru akrecionog diska

7 AGN Clumpy Torus

8 I( )=I AD ( )+I G ( ) Where: I AD ( ) the emissions of the relativistic accretion disk I G ( ) the emissions of the spherical region around the disk The whole line profile can be described by the relation: The disk is contributing to the wings of the lines, a spherical medium arround the disk to the core of the lines. Two-component model

9

10 Disk model Chen & Halpern (1989).

11 Sl. 1: Dekompozicija Hβ linije posmatrana na INT-u. Isprekidana linija pretstavlja posmatranja,dok puna linija pretstavlja najbolji fit. Na dnu su gausove komponente i isprekidana linija koja pretstavlja doprinos Fe II multipleksa

12 Sl. 2: Isto kao Sl. 1, samo za Hα liniju. Pored uske Hα centralne komponente, prisutne su dve slabe uske [NII] linije: na 7136 Å i 7174 Å

13 Fit a)the comparison of all line profiles (dashed lines) with an averaged one (solid line); b)fit of the averaged line profile. c),d),e),f) represent fit of Lyα, Mg II, Hβ and H α lines, resp. IIIZw2

14 MODEL IIIZw2 z disk – shift of the disk komponent s – width of Gaussianin the disk R inn inner radius R out outer radius z G shift of the Gaussian W G width of the Gaussian averaged prfile F D /F G flux ratio

15 Averaged Hβ and Hα profiles.

16 Two fits of 3C 273 with the two-component model the disk parameters are: a) i=14°, Rinn=400 Rg, Rout=1420 Rg, Wd=1620 km/s, p=3.0 (WG=1350 km/s); b) i=29°, Rinn=1250 Rg, Rout=15000 Rg, Wd=700 km/s, p=2.8 (WG=1380 km/s)

17 The random velocities of a spherical region (ILR) as a function of the local random disk velocities. The dashed line represents the function VILR = VDisk [km s−1].

18 Ratio of FWHM & width @ 10- 40% of hight in function of inclination. over 25% disk is weak Gaussian flux = 1/2 disk flux

19 Ratio of FWHM & width @ 5-45% of hight in function of inclination. over 40% disk is weak Gaussian flux = 1/3 disk flux

20 Ratio of FWHM & width @ 2-30% of hight in function of inclination. over 10% disk is weak Gaussian flux = 3 x disk flux

21 Ratio of FWHM & width @ 5-35% of hight in function of inclination. over 10-15% disk is not detectable. Gaussian flux = 2 x disk flux

22 Ratio of FWHM & width @ 3-30%. Gaussian flux = disk flux

23 Gaussian flux = disk flux, for inclination i=30, Fixed ring, width 800, Rinn from 200 to 1200

24 Gaussian flux = disk flux, for inclination i=30, Weith response to emisivity

25 Gaussian flux = disk flux, for inclination i=20, Fixed ring, width 800, Rinn from 200 to 1200

26

27 3c120 10 % - 2.867891 20 % - 1.915054 Height [%] W x /W 50

28 3c120 10 %: 2.867891 20 %: 1.915054 na 10% for i=20 2.9=> Rinn=600 na 20% for i=20 1.9=> Rinn=1000 --------------------------------------------------------------- Flux of Gaussian = 1/2 fluks of disk 10% 2.9 => i=20 20% 2 =>i=25 Flux of Gaussian = 1/3 fluks of disk 10% 2.9 =>i=26 20% 1.9 => i=25 Flux of Gaussian = 3 x fluks of disk 10% 3 => i=15 20% 1.65 =>i=15 max Flux of Gaussian = fluks of disk 10% 2.8 => i=15 20% 1.9 => i=12 Flux of Gaussian = 2 x fluks of disk 10% 2.6 =>i=15 20% 1.75 => i=20 max

29 na 10% za i=10 2.9=> Rinn=170 na 20% za i=10 1.9=> Rinn=230 na 10% za i=12 2.9=> Rinn=200 na 20% za i=12 1.9=> Rinn=250 na 10% za i=15 2.9=> Rinn=320 na 20% za i=15 1.9=> Rinn=600

30 Future work: To simulate for finer grid of inclinations and rings To apply for large number of real spectra of AGN To analyze expectations of the disk influence in the fluxes of emission line profiles of the AGN spectra...


Download ppt "Possible disk emission in the BLR of AGN Edi Bon  Astronomical Observatory Belgrade, Serbia L. Č. Popović 1, D. Ilić 2 1- Astronomical."

Similar presentations


Ads by Google