Download presentation
Presentation is loading. Please wait.
Published byMercy Rogers Modified over 9 years ago
1
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 11– Fuzzy Logic: Inferencing
2
Representation of Fuzzy sets Let U = {x 1,x 2,…..,x n } |U| = n The various sets composed of elements from U are presented as points on and inside the n-dimensional hypercube. The crisp sets are the corners of the hypercube. (1,0) (0,0) (0,1) (1,1) x1x1 x2x2 x1x1 x2x2 (x 1,x 2 ) A(0.3,0.4) μ A (x 1 )=0.3 μ A (x 2 )=0.4 Φ U={x 1,x 2 } A fuzzy set A is represented by a point in the n-dimensional space as the point {μ A (x 1 ), μ A (x 2 ),……μ A (x n )}
3
Degree of fuzziness The centre of the hypercube is the “most fuzzy” set. Fuzziness decreases as one nears the corners Measure of fuzziness Called the entropy of a fuzzy set Entropy Fuzzy setFarthest corner Nearest corner
4
(1,0) (0,0) (0,1) (1,1) x1x1 x2x2 d(A, nearest) d(A, farthest) (0.5,0.5) A
5
Definition Distance between two fuzzy sets L 1 - norm Let C = fuzzy set represented by the centre point d(c,nearest) = |0.5-1.0| + |0.5 – 0.0| = 1 = d(C,farthest) => E(C) = 1
6
Definition Cardinality of a fuzzy set [generalization of cardinality of classical sets] Union, Intersection, complementation, subset hood
7
Note on definition by extension and intension S 1 = {x i |x i mod 2 = 0 } – Intension S 2 = {0,2,4,6,8,10,………..} – extension How to define subset hood?
8
Meaning of fuzzy subset Suppose, following classical set theory we say if Consider the n-hyperspace representation of A and B (1,1) (1,0)(0,0) (0,1) x1x1 x2x2 A. B 1.B 2.B 3 Region where
9
This effectively means CRISPLY P(A) = Power set of A Eg: Suppose A = {0,1,0,1,0,1,…………….,0,1} – 10 4 elements B = {0,0,0,1,0,1,……………….,0,1} – 10 4 elements Isn’t with a degree? (only differs in the 2 nd element)
10
Fuzzy definition of subset Measured in terms of “fit violation”, i.e. violating the condition Degree of subset hood = 1- degree of superset hood = m(A) = cardinality of A =
11
We can show that Exercise 1: Show the relationship between entropy and subset hood Exercise 2: Prove that Subset hood of B in A
12
Fuzzy sets to fuzzy logic Forms the foundation of fuzzy rule based system or fuzzy expert system Expert System Rules are of the form If then A i Where C i s are conditions Eg: C 1 =Colour of the eye yellow C 2 = has fever C 3 =high bilurubin A = hepatitis
13
In fuzzy logic we have fuzzy predicates Classical logic P(x 1,x 2,x 3 …..x n ) = 0/1 Fuzzy Logic P(x 1,x 2,x 3 …..x n ) = [0,1] Fuzzy OR Fuzzy AND Fuzzy NOT
14
Fuzzy Implication Many theories have been advanced and many expressions exist The most used is Lukasiewitz formula t(P) = truth value of a proposition/predicate. In fuzzy logic t(P) = [0,1] t( ) = min[1,1 -t(P)+t(Q)] Lukasiewitz definition of implication
15
Eg: If pressure is high then Volume is low Pressure High Pressure
16
Fuzzy Inferencing
17
Fuzzy Inferencing: illustration through inverted pendulum control problem Core The Lukasiewitz rule t( ) = min[1,1 + t(P) – t(Q)] An example Controlling an inverted pendulum θ = angular velocity Motor i=current
18
The goal: To keep the pendulum in vertical position (θ=0) in dynamic equilibrium. Whenever the pendulum departs from vertical, a torque is produced by sending a current ‘i’ Controlling factors for appropriate current Angle θ, Angular velocity θ. Some intuitive rules If θ is +ve small and θ. is –ve small then current is zero If θ is +ve small and θ. is +ve small then current is –ve medium
19
-ve med -ve small Zero +ve small +ve med -ve med -ve small Zero +ve small +ve med +ve small -ve small -ve med -ve small +ve small Zero Region of interest Control Matrix θ.θ. θ
20
Each cell is a rule of the form If θ is <> and θ. is <> then i is <> 4 “Centre rules” 1.if θ = = Zero and θ. = = Zero then i = Zero 2.if θ is +ve small and θ. = = Zero then i is –ve small 3.if θ is –ve small and θ. = = Zero then i is +ve small 4.if θ = = Zero and θ. is +ve small then i is –ve small 5. if θ = = Zero and θ. is –ve small then i is +ve small
21
Linguistic variables 1.Zero 2.+ve small 3.-ve small Profiles -ε-ε+ε+ε ε2 ε2 -ε2-ε2 -ε3-ε3 ε3ε3 +ve small -ve small 1 Quantity (θ, θ., i)
22
Inference procedure 1. Read actual numerical values of θ and θ. 2. Get the corresponding μ values μ Zero, μ (+ve small), μ (-ve small). This is called FUZZIFICATION 3. For different rules, get the fuzzy I-values from the R.H.S of the rules. 4. “Collate” by some method and get ONE current value. This is called DEFUZZIFICATION 5. Result is one numerical value of ‘i’.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.