Download presentation
Presentation is loading. Please wait.
Published byNickolas Reynolds Modified over 9 years ago
1
COMPETITION Arises when organisms try to make use of the same resources.
2
Intraspecific competition occurs when individuals of the same species compete for a limiting resource. (e.g. food, light, nutrients, space).
3
Interspecific Competition occurs when 2 different species compete for a resource in short supply
5
Competitive Exclusion Strong competition can lead to competitive exclusion, local elimination of a competing species The competitive exclusion principle states that two species competing for the same limiting resources cannot coexist in the same place
6
G.F. Gause – Competitive Exclusion Principle G.F. Gause – In 1932 developed the CEP after researching mixed cultures of yeast and Paramecium. He concluded that no 2 species can occupy the same niche at the same time. Over time, one species will be more successful & outcompete the other.
7
Competitive Exclusion Principle 1961 J.H. Connell University of California
8
Ecological Niches The total of a species’ use of biotic and abiotic resources is called the species’ ecological niche An ecological niche can also be thought of as an organism’s ecological role Ecologically similar species can coexist in a community if there are one or more significant differences in their niches
9
As a result of competition, a species’ fundamental niche may differ from its realized niche
10
Resource partitioning is differentiation of ecological niches, enabling similar species to coexist in a community
11
Robert MacArthur (1930 - 1972) Studied 5 species Of warblers which appeared to be competing for the same resource. MacArthur’s research determined that each species actually spent most of its time feeding in different parts of the tree and ate different subsets of insects in the tree.
13
Fig. 54-2 A. ricordii A. insolitus usually perches on shady branches. A. distichus perches on fence posts and other sunny surfaces. A. aliniger A. distichus A. insolitus A. christophei A. cybotes A. etheridgei
14
Toxins in the Environment Humans release many toxic chemicals, including synthetics previously unknown to nature In some cases, harmful substances persist for long periods in an ecosystem One reason toxins are harmful is that they become more concentrated in successive trophic levels Biological magnification concentrates toxins at higher trophic levels, where biomass is lower
15
PCBs and many pesticides such as DDT are subject to biological magnification in ecosystems In the 1960s Rachel Carson brought attention to the biomagnification of DDT in birds in her book Silent Spring
16
Fig. 55-20 Lake trout 4.83 ppm Concentration of PCBs Herring gull eggs 124 ppm Smelt 1.04 ppm Phytoplankton 0.025 ppm Zooplankton 0.123 ppm
18
Ozone Shield Depletion Pertains to O 3 in stratosphere Chlorine atoms from CFCs destroy O 3 ex. Freon cleaning agents foaming agents egg carton insulation & padding
19
Ozone shield is critical for all living things UV radiation causes mutations leading to: skin cancer cataracts impairment of immune system Also affects crop & tree growth and will kill off algae and krill.
20
History on ozone depletion Problem identified in 1980’s Esp. above Antarctic in the spring Propellants were banned in aerosols 1995 – U.S. halted production of CFCs Chlorine pollution began to decrease 2000 – longer lasting polar clouds contribute to breakdown of O 3 by chlorine pollution.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.