Download presentation
Presentation is loading. Please wait.
Published byMaud Hunt Modified over 9 years ago
1
Week 8 - Wednesday
2
What did we talk about last time? Textures Volume textures Cube maps Texture caching and compression Procedural texturing Texture animation Material mapping Alpha mapping Bump mapping Normal maps Parallax mapping Relief mapping Heightfield texturing
6
Radiometry is the measurement of electromagnetic radiation (for us, specifically light) Light is the flow of photons We'll generally think of photons as particles, rather than waves Photon characteristics Frequency ν = c/λ (Hertz) Wavelength λ = c/ν (meters) Energy Q = hν (joules) [h is Planck's constant]
7
We'll be interested in the following radiometric quantities QuantityUnit Radiant energyjoule (J) Radiant fluxwatt (W) IrradianceW/m 2 Radiant intensityW/sr RadianceW/(m 2 sr)
8
Radiant flux: energy per unit time (power) Irradiance: energy per unit time through a surface Intensity: energy per unit time per steradian
9
The radiance L is what we care about since that's what sensors detect We can think of radiance as the portion of irradiance within a solid angle Or, we can think of radiance as the portion of a light's intensity that flow through a surface Radiance doesn't change with distance
11
Radiometry just deals with physics Photometry takes everything from radiometry and weights it by the sensitivity of the human eye Photometry is just trying to account for the eye's differing sensitivity to different wavelengths
12
Because they're just rescalings of radiometric units, every photometric unit is based on a radiometric one Luminance is often used to describe the brightness of surfaces, such as LCD screens Radiometric Quantity UnitPhotometric Quantity Unit Radiant energyjoule (J)Luminous energytalbot Radiant fluxwatt (W)Luminous fluxlumen IrradianceW/m 2 Illuminancelux Radiant intensityW/srLuminous intensitycandela RadianceW/(m 2 sr)Luminancenit
13
Colorimetry is the science of quantifying human color perception The CIE defined a system of three non-monochromatic colors X, Y, and Z for describing the human perceivable color space RGB is a transform from these values into monochromatic red, green, and blue colors RGB can only express colors in the triangle As you know, there are others (HSV, HSL, etc.)
15
Real light behaves consistently (but in a complex way) For rendering purposes, we often divide light into categories that are easy to model Directional lights (like the sun) Omni lights (located at a point, but evenly illuminate in all directions) Spotlights (located at a point and have intensity that varies with direction) Textured lights (give light projections variety in shape or color) ▪ Similar to gobos, if you know anything about stage lighting
16
With a programmable pipeline, you can express lighting models of limitless complexity The old DirectX fixed function pipeline provided a few stock lighting models Ambient lights Omni lights Spotlights Directional lights All lights have diffuse, specular, and ambient color Let's see how to implement these lighting models with shaders
17
Ambient lights are very simple to implement in shaders We've already seen the code The vertex shader must simply transform the vertex into clip space (world x view x projection) The pixel shader colors each fragment a constant color We could modulate this by a texture if we were using one
18
float4x4 World; float4x4 View; float4x4 Projection; float4 AmbientColor = float4(1, 1, 1, 1); float AmbientIntensity; struct VertexShaderInput { float4 Position : SV_Position; }; struct VertexShaderOutput { float4 Position : SV_Position; }; float4x4 World; float4x4 View; float4x4 Projection; float4 AmbientColor = float4(1, 1, 1, 1); float AmbientIntensity; struct VertexShaderInput { float4 Position : SV_Position; }; struct VertexShaderOutput { float4 Position : SV_Position; };
19
VertexShaderOutput VertexShaderFunction( VertexShaderInput input) { VertexShaderOutput output; float4 worldPosition = mul(input.Position, World); float4 viewPosition = mul(worldPosition, View); output.Position = mul(viewPosition, Projection); return output; } VertexShaderOutput VertexShaderFunction( VertexShaderInput input) { VertexShaderOutput output; float4 worldPosition = mul(input.Position, World); float4 viewPosition = mul(worldPosition, View); output.Position = mul(viewPosition, Projection); return output; }
20
float4 PixelShaderFunction(VertexShaderOutput input) : SV_Target { return AmbientColor * AmbientIntensity; } float4 PixelShaderFunction(VertexShaderOutput input) : SV_Target { return AmbientColor * AmbientIntensity; } technique Ambient { pass Pass1 { VertexShader = compile vs_2_0 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } technique Ambient { pass Pass1 { VertexShader = compile vs_2_0 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); }
21
Directional lights model lights from a very long distance with parallel rays, like the sun It only has color (specular and diffuse) and direction They are virtually free from a computational perspective Directional lights are also the standard model for BasicEffect You don't have to use a shader to do them Let's look at a diffuse shader first
22
We add values for the diffuse light intensity and direction We add a WorldInverseTranspose to transform the normals We also add normals to our input and color to our output float4x4 World; float4x4 View; float4x4 Projection; float4x4 WorldInverseTranspose; float4 AmbientColor = float4(1, 1, 1, 1); float AmbientIntensity = 0.1; float3 DiffuseLightDirection = float3(1, 1, 0); float4 DiffuseColor = float4(1, 1, 1, 1); float DiffuseIntensity = 0.7; struct VertexShaderInput { float4 Position : SV_POSITION; float3 Normal : NORMAL; }; struct VertexShaderOutput { float4 Position : SV_POSITION; float4 Color : COLOR; }; float4x4 World; float4x4 View; float4x4 Projection; float4x4 WorldInverseTranspose; float4 AmbientColor = float4(1, 1, 1, 1); float AmbientIntensity = 0.1; float3 DiffuseLightDirection = float3(1, 1, 0); float4 DiffuseColor = float4(1, 1, 1, 1); float DiffuseIntensity = 0.7; struct VertexShaderInput { float4 Position : SV_POSITION; float3 Normal : NORMAL; }; struct VertexShaderOutput { float4 Position : SV_POSITION; float4 Color : COLOR; };
23
Color depends on the surface normal dotted with the light vector VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4 worldPosition = mul(input.Position, World); float4 viewPosition = mul(worldPosition, View); output.Position = mul(viewPosition, Projection); float3 normal = mul(input.Normal, (float3x3)WorldInverseTranspose); float lightIntensity = dot(normalize(normal), normalize(DiffuseLightDirection)); output.Color = saturate(DiffuseColor * DiffuseIntensity * lightIntensity); return output; } VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4 worldPosition = mul(input.Position, World); float4 viewPosition = mul(worldPosition, View); output.Position = mul(viewPosition, Projection); float3 normal = mul(input.Normal, (float3x3)WorldInverseTranspose); float lightIntensity = dot(normalize(normal), normalize(DiffuseLightDirection)); output.Color = saturate(DiffuseColor * DiffuseIntensity * lightIntensity); return output; }
24
No real differences here The diffuse color and ambient colors are added together The technique is exactly the same float4 PixelShaderFunction(VertexShaderOutput input) : SV_Target { return saturate(input.Color + AmbientColor * AmbientIntensity); } float4 PixelShaderFunction(VertexShaderOutput input) : SV_Target { return saturate(input.Color + AmbientColor * AmbientIntensity); }
25
Adding a specular component to the diffuse shader requires incorporating the view vector It will be included in the shader file and be set as a parameter in the C# code
26
The camera location is added to the declarations As are specular colors and a shininess parameter float4x4 World; float4x4 View; float4x4 Projection; float4x4 WorldInverseTranspose; float3 Camera; static const float PI = 3.14159265f; float4 AmbientColor = float4(1, 1, 1, 1); float AmbientIntensity = 0.1; float3 DiffuseLightDirection = float3(1, 1, 0); float4 DiffuseColor = float4(1, 1, 1, 1); float DiffuseIntensity = 0.7; float Shininess; float4 SpecularColor = float4(1, 1, 1, 1); float SpecularIntensity = 0.5; float4x4 World; float4x4 View; float4x4 Projection; float4x4 WorldInverseTranspose; float3 Camera; static const float PI = 3.14159265f; float4 AmbientColor = float4(1, 1, 1, 1); float AmbientIntensity = 0.1; float3 DiffuseLightDirection = float3(1, 1, 0); float4 DiffuseColor = float4(1, 1, 1, 1); float DiffuseIntensity = 0.7; float Shininess; float4 SpecularColor = float4(1, 1, 1, 1); float SpecularIntensity = 0.5;
27
The output adds a normal so that the half vector can be computed in the pixel shader A world position lets us compute the view vector to the camera struct VertexShaderInput { float4 Position : SV_POSITION; float3 Normal : NORMAL; }; struct VertexShaderOutput { float4 Position : SV_POSITION; float4 Color : COLOR; float3 Normal : NORMAL; float4 WorldPosition : POSITIONT; }; struct VertexShaderInput { float4 Position : SV_POSITION; float3 Normal : NORMAL; }; struct VertexShaderOutput { float4 Position : SV_POSITION; float4 Color : COLOR; float3 Normal : NORMAL; float4 WorldPosition : POSITIONT; };
28
The same computations as the diffuse shader, but we store the normal and the transformed world position in the output VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4 worldPosition = mul(input.Position, World); output.WorldPosition = worldPosition; float4 viewPosition = mul(worldPosition, View); output.Position = mul(viewPosition, Projection); float3 normal = normalize(mul(input.Normal, (float3x3)WorldInverseTranspose)); float lightIntensity = dot(normal, normalize(DiffuseLightDirection)); output.Color = saturate(DiffuseColor * DiffuseIntensity * lightIntensity); output.Normal = normal; return output; } VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4 worldPosition = mul(input.Position, World); output.WorldPosition = worldPosition; float4 viewPosition = mul(worldPosition, View); output.Position = mul(viewPosition, Projection); float3 normal = normalize(mul(input.Normal, (float3x3)WorldInverseTranspose)); float lightIntensity = dot(normal, normalize(DiffuseLightDirection)); output.Color = saturate(DiffuseColor * DiffuseIntensity * lightIntensity); output.Normal = normal; return output; }
29
Here we finally have a real computation because we need to use the pixel normal (which is averaged from vertices) in combination with the view vector The technique is the same float4 PixelShaderFunction(VertexShaderOutput input) : SV_Target { float3 light = normalize(DiffuseLightDirection); float3 normal = normalize(input.Normal); float3 reflect = normalize(2 * dot(light, normal) * normal – light); float3 view = normalize(input.WorldPosition - Camera); float dotProduct = dot(reflect, view); float4 specular = (8 + Shininess) / (8 * PI) * SpecularIntensity * SpecularColor * max(pow(dotProduct, Shininess), 0) * length(input.Color); return saturate(input.Color + AmbientColor * AmbientIntensity + specular); } float4 PixelShaderFunction(VertexShaderOutput input) : SV_Target { float3 light = normalize(DiffuseLightDirection); float3 normal = normalize(input.Normal); float3 reflect = normalize(2 * dot(light, normal) * normal – light); float3 view = normalize(input.WorldPosition - Camera); float dotProduct = dot(reflect, view); float4 specular = (8 + Shininess) / (8 * PI) * SpecularIntensity * SpecularColor * max(pow(dotProduct, Shininess), 0) * length(input.Color); return saturate(input.Color + AmbientColor * AmbientIntensity + specular); }
30
Point lights model omni lights at a specific position They generally attenuate (get dimmer) over a distance and have a maximum range DirectX has a constant attenuation, linear attenuation, and a quadratic attenuation You can choose attenuation levels through shaders They are more computationally expensive than directional lights because a light vector has to be computed for every pixel It is possible to implement point lights in a deferred shader, lighting only those pixels that actually get used
31
We add light position float4x4 World; float4x4 View; float4x4 Projection; float4x4 WorldInverseTranspose; float3 LightPosition; float3 Camera; static const float PI = 3.14159265f; float4 AmbientColor = float4(1, 1, 1, 1); float AmbientIntensity = 0.1f; float LightRadius = 50; float4 DiffuseColor = float4(1, 1, 1, 1); float DiffuseIntensity = 0.7; float Shininess; float4 SpecularColor = float4(1, 1, 1, 1); float SpecularIntensity = 0.5f; float4x4 World; float4x4 View; float4x4 Projection; float4x4 WorldInverseTranspose; float3 LightPosition; float3 Camera; static const float PI = 3.14159265f; float4 AmbientColor = float4(1, 1, 1, 1); float AmbientIntensity = 0.1f; float LightRadius = 50; float4 DiffuseColor = float4(1, 1, 1, 1); float DiffuseIntensity = 0.7; float Shininess; float4 SpecularColor = float4(1, 1, 1, 1); float SpecularIntensity = 0.5f;
32
We no longer need color in the output We do need the vector to the camera from the location We keep the world location at that fragment struct VertexShaderInput { float4 Position : SV_POSITION; float3 Normal : NORMAL; }; struct VertexShaderOutput { float4 Position : SV_POSITION; float4 WorldPosition : POSITIONT; float3 Normal : NORMAL; }; struct VertexShaderInput { float4 Position : SV_POSITION; float3 Normal : NORMAL; }; struct VertexShaderOutput { float4 Position : SV_POSITION; float4 WorldPosition : POSITIONT; float3 Normal : NORMAL; };
33
We compute the normal and the world position VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4 worldPosition = mul(input.Position, World); output.WorldPosition = worldPosition; float4 viewPosition = mul(worldPosition, View); output.Position = mul(viewPosition, Projection); float3 normal = normalize(mul(input.Normal, (float3x3)WorldInverseTranspose)); output.Normal = normal; return output; } VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4 worldPosition = mul(input.Position, World); output.WorldPosition = worldPosition; float4 viewPosition = mul(worldPosition, View); output.Position = mul(viewPosition, Projection); float3 normal = normalize(mul(input.Normal, (float3x3)WorldInverseTranspose)); output.Normal = normal; return output; }
34
Lots of junk in here float4 PixelShaderFunction(VertexShaderOutput input) : SV_Target { float3 normal = normalize(input.Normal); float3 lightDirection = LightPosition – (float3)input.WorldPosition; float intensity = pow(1.0f – saturate(length(lightDirection)/LightRadius), 2); lightDirection = normalize(lightDirection); //normalize after float3 view = normalize(Camera - (float3)input.WorldPosition); float diffuseColor = dot(normal, lightDirection); float3 reflect = normalize(2 * diffuseColor * normal – lightDirection); float dotProduct = dot(reflect, view); float specular = (8 + Shininess) / (8 * PI) * SpecularIntensity * SpecularColor * max(pow(dotProduct, Shininess), 0) * length(diffuseColor); return saturate(diffuseColor + AmbientColor * AmbientIntensity + specular); } float4 PixelShaderFunction(VertexShaderOutput input) : SV_Target { float3 normal = normalize(input.Normal); float3 lightDirection = LightPosition – (float3)input.WorldPosition; float intensity = pow(1.0f – saturate(length(lightDirection)/LightRadius), 2); lightDirection = normalize(lightDirection); //normalize after float3 view = normalize(Camera - (float3)input.WorldPosition); float diffuseColor = dot(normal, lightDirection); float3 reflect = normalize(2 * diffuseColor * normal – lightDirection); float dotProduct = dot(reflect, view); float specular = (8 + Shininess) / (8 * PI) * SpecularIntensity * SpecularColor * max(pow(dotProduct, Shininess), 0) * length(diffuseColor); return saturate(diffuseColor + AmbientColor * AmbientIntensity + specular); }
37
BRDFs Implementing BRDFs Texture mapping in shaders
38
Finish reading Chapter 7 Summer REU opportunity: Machine learning at the Florida Institute of Technology Deadline March 31, 2015 http://www.amalthea-reu.org/
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.