Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ways to prove Triangles Congruent (SSS), (SAS), (ASA)

Similar presentations


Presentation on theme: "Ways to prove Triangles Congruent (SSS), (SAS), (ASA)"— Presentation transcript:

1 Ways to prove Triangles Congruent (SSS), (SAS), (ASA)

2 EXAMPLE 4 Use the Third Angles Theorem Find m BDC. SOLUTION A B and ADC BCD, so by the Third Angles Theorem, ACD BDC. By the Triangle Sum Theorem, m ACD = 180° – 45° – 30° = 105° . So, m ACD = m BDC = 105° by the definition of congruent angles. ANSWER

3 EXAMPLE 5 Prove that triangles are congruent Write a proof. GIVEN AD CB, DC AB ACD CAB, CAD ACB PROVE ACD CAB Plan for Proof AC AC. Use the Reflexive Property to show that Use the Third Angles Theorem to show that B D

4 Prove that triangles are congruent
EXAMPLE 5 Prove that triangles are congruent Plan in Action STATEMENTS REASONS AD CB , DC BA Given AC AC. Reflexive Property of Congruence ACD CAB, CAD ACB Given B D Third Angles Theorem ACD CAB Definition of

5 GUIDED PRACTICE for Examples 4 and 5 DCN. In the diagram, what is m SOLUTION CDN NSR, DNC SNR then the third angles are also congruent NRS DCN = 75°

6 GUIDED PRACTICE for Examples 4 and 5 By the definition of congruence, what additional information is needed to know that NDC NSR. SOLUTION CN NR, CDN NSR, DCN NRS Given : (Proved from above sum) NDC NSR. Proved :

7 GUIDED PRACTICE for Examples 4 and 5 STATEMENT REASON CDN NSR DCN NRS
Given DCN NRS Given Therefore DC RS, DN SN as angles are congruent their sides are congruent.

8 EXAMPLE 1 Identify congruent parts Write a congruence statement for the triangles. Identify all pairs of congruent corresponding parts. SOLUTION The diagram indicates that JKL TSR. Corresponding angles J T, ∠ K S, L R Corresponding sides JK TS, KL SR, LJ RT

9 EXAMPLE 2 Use properties of congruent figures In the diagram, DEFG SPQR. Find the value of x. Find the value of y. SOLUTION You know that FG QR. FG = QR 12 = 2x – 4 16 = 2x 8 = x

10 Use properties of congruent figures
EXAMPLE 2 Use properties of congruent figures You know that ∠ F Q. m F = m Q 68 o = (6y + x) 68 = 6y + 8 10 = y

11 EXAMPLE 3 Show that figures are congruent PAINTING If you divide the wall into orange and blue sections along JK , will the sections of the wall be the same size and shape?Explain. SOLUTION From the diagram, A C and D B because all right angles are congruent. Also, by the Lines Perpendicular to a Transversal Theorem, AB DC .

12 EXAMPLE 3 Show that figures are congruent Then, and by the Alternate Interior Angles Theorem. So, all pairs of corresponding angles are congruent. The diagram shows AJ CK , KD JB , and DA BC . By the Reflexive Property, JK KJ . All corresponding parts are congruent, so AJKD CKJB.

13 GUIDED PRACTICE for Examples 1, 2, and 3 In the diagram at the right, ABGH CDEF. Identify all pairs of congruent corresponding parts. SOLUTION Corresponding sides: AB CD, BG DE, GH FE, HA FC Corresponding angles: A C, B D, G E, H F.

14 GUIDED PRACTICE for Examples 1, 2, and 3 In the diagram at the right, ABGH CDEF. 2. Find the value of x and find m H. SOLUTION (a) You know that H F (4x+ 5)° = 105° 4x = 100 x = 25 (b) You know that H F m H m F =105°

15 GUIDED PRACTICE for Examples 1, 2, and 3 In the diagram at the right, ABGH CDEF. 3. Show that PTS RTQ. SOLUTION In the given diagram PS QR, PT TR, ST TQ and Similarly all angles are to each other, therefore all of the corresponding points of PTS are congruent to those of RTQ by the indicated markings, the Vertical Angle Theorem and the Alternate Interior Angle theorem.

16 EXAMPLE 1 Use the SSS Congruence Postulate Write a proof. GIVEN KL NL, KM NM PROVE KLM NLM Proof It is given that KL NL and KM NM By the Reflexive Property, LM LN. So, by the SSS Congruence Postulate, KLM NLM

17 GUIDED PRACTICE for Example 1 Decide whether the congruence statement is true. Explain your reasoning. DFG HJK SOLUTION Three sides of one triangle are congruent to three sides of second triangle then the two triangle are congruent. Side DG HK, Side DF JH,and Side FG JK. So by the SSS Congruence postulate, DFG HJK. Yes. The statement is true.

18 GUIDED PRACTICE for Example 1 Decide whether the congruence statement is true. Explain your reasoning. 2. ACB CAD SOLUTION BC AD GIVEN : PROVE : ACB CAD PROOF: It is given that BC AD By Reflexive property AC AC, But AB is not congruent CD.

19 GUIDED PRACTICE for Example 1 Therefore the given statement is false and ABC is not Congruent to CAD because corresponding sides are not congruent

20 GUIDED PRACTICE for Example 1 Decide whether the congruence statement is true. Explain your reasoning. QPT RST 3. SOLUTION QT TR , PQ SR, PT TS GIVEN : PROVE : QPT RST PROOF: It is given that QT TR, PQ SR, PT TS. So by SSS congruence postulate, QPT RST. Yes the statement is true

21 EXAMPLE 1 Use the SAS Congruence Postulate Write a proof. GIVEN BC DA, BC AD PROVE ABC CDA STATEMENTS REASONS Given BC DA S Given BC AD BCA DAC Alternate Interior Angles Theorem A AC CA Reflexive Property of Congruence S

22 EXAMPLE 1 Use the SAS Congruence Postulate STATEMENTS REASONS ABC CDA SAS Congruence Postulate

23 EXAMPLE 2 Use SAS and properties of shapes In the diagram, QS and RP pass through the center M of the circle. What can you conclude about MRS and MPQ? SOLUTION Because they are vertical angles, PMQ RMS. All points on a circle are the same distance from the center, so MP, MQ, MR, and MS are all equal. MRS and MPQ are congruent by the SAS Congruence Postulate. ANSWER

24 GUIDED PRACTICE for Examples 1 and 2 In the diagram, ABCD is a square with four congruent sides and four right angles. R, S, T, and U are the midpoints of the sides of ABCD. Also, RT SU and SU VU Prove that SVR UVR STATEMENTS REASONS SV VU Given SVR RVU Definition of line RV VR Reflexive Property of Congruence SVR UVR SAS Congruence Postulate

25 GUIDED PRACTICE for Examples 1 and 2 Prove that BSR DUT STATEMENTS REASONS Given BS DU RBS TDU Definition of line RS UT Given BSR DUT SAS Congruence Postulate

26 EXAMPLE 3 Use the Hypotenuse-Leg Congruence Theorem Write a proof. GIVEN WY XZ, WZ ZY, XY ZY PROVE WYZ XZY SOLUTION Redraw the triangles so they are side by side with corresponding parts in the same position. Mark the given information in the diagram.

27 EXAMPLE 3 Use the Hypotenuse-Leg Congruence Theorem STATEMENTS REASONS WY XZ Given H WZ ZY, XY ZY Given Definition of lines Z and Y are right angles Definition of a right triangle WYZ and XZY are right triangles. L ZY YZ Reflexive Property of Congruence WYZ XZY HL Congruence Theorem

28 EXAMPLE 4 Choose a postulate or theorem Sign Making You are making a canvas sign to hang on the triangular wall over the door to the barn shown in the picture. You think you can use two identical triangular sheets of canvas. You know that RP QS and PQ PS . What postulate or theorem can you use to conclude that PQR PSR?

29 EXAMPLE 4 Choose a postulate or theorem SOLUTION RPQ and RPS are right angles, so they are congruent. So, two sides and their included angle are congruent. You are given that PQ PS . By the Reflexive Property, RP RP . By the definition of perpendicular lines, both You can use the SAS Congruence Postulate to conclude that PQR PSR ANSWER

30 GUIDED PRACTICE for Examples 3 and 4 Use the diagram at the right. Redraw ACB and DBC side by side with corresponding parts in the same position.

31 GUIDED PRACTICE for Examples 3 and 4 Use the diagram at the right. Use the information in the diagram to prove that ACB DBC STATEMENTS REASONS AB DC Given H AC BC, DB BC Given Definition of lines C B Definition of a right triangle ACB and DBC are right triangles.

32 GUIDED PRACTICE for Examples 3 and 4 STATEMENTS REASONS L BC CB Reflexive Property of Congruence ACB DBC HL Congruence Theorem


Download ppt "Ways to prove Triangles Congruent (SSS), (SAS), (ASA)"

Similar presentations


Ads by Google