Download presentation
Presentation is loading. Please wait.
1
L14_Properties of a Parallelogram
Quadrilaterals Eleanor Roosevelt High School Chin-Sung Lin
2
Definitions of the Quadrilaterals
L14_Properties of a Parallelogram ERHS Math Geometry Definitions of the Quadrilaterals Mr. Chin-Sung Lin
3
L14_Properties of a Parallelogram
ERHS Math Geometry Quadrilaterals A quadrilateral is a polygon with four sides Mr. Chin-Sung Lin
4
Parts & Properties of the Quadrilaterals
L14_Properties of a Parallelogram ERHS Math Geometry Parts & Properties of the Quadrilaterals Mr. Chin-Sung Lin
5
Consecutive (Adjacent) Vertices
L14_Properties of a Parallelogram ERHS Math Geometry Consecutive (Adjacent) Vertices Consecutive vertices or adjacent vertices are vertices that are endpoints of the same side P and Q, Q and R, R and S, S and P P Q S R Mr. Chin-Sung Lin
6
Consecutive (Adjacent) Sides
L14_Properties of a Parallelogram ERHS Math Geometry Consecutive (Adjacent) Sides Consecutive sides or adjacent sides are sides that have a common endpoint PQ and QR, QR and RS, RS and SP, SP and PQ P Q S R Mr. Chin-Sung Lin
7
L14_Properties of a Parallelogram
ERHS Math Geometry Opposite Sides Opposite sides of a quadrilateral are sides that do not have a common endpoint PQ and RS, SP and QR P Q S R Mr. Chin-Sung Lin
8
L14_Properties of a Parallelogram
ERHS Math Geometry Consecutive angles Consecutive angles of a quadrilateral are angles whose vertices are consecutive P and Q, Q and R, R and S, S and P P Q S R Mr. Chin-Sung Lin
9
L14_Properties of a Parallelogram
ERHS Math Geometry Opposite Angles Opposite angles of a quadrilateral are angles whose vertices are not consecutive P and R, Q and S P Q S R Mr. Chin-Sung Lin
10
L14_Properties of a Parallelogram
ERHS Math Geometry Diagonals A diagonal of a quadrilateral is a line segment whose endpoints are two nonadjacent vertices of the quadrilateral PR and QS P Q S R Mr. Chin-Sung Lin
11
Sum of the Measures of Angles
L14_Properties of a Parallelogram ERHS Math Geometry Sum of the Measures of Angles The sum of the measures of the angles of a quadrilateral is 360 degrees mP + mQ + mR + mS = 360 P Q S R Mr. Chin-Sung Lin
12
L14_Properties of a Parallelogram
ERHS Math Geometry Parallelograms Mr. Chin-Sung Lin
13
L14_Properties of a Parallelogram
ERHS Math Geometry A B D C Parallelogram A parallelogram is a quadrilateral in which two pairs of opposite sides are parallel AB || CD, AD || BC A parallelogram can be denoted by the symbol ABCD The use of arrowheads, pointing in the same direction, to show sides that are parallel in the figure Mr. Chin-Sung Lin
14
Theorems of Parallelogram
L14_Properties of a Parallelogram ERHS Math Geometry Theorems of Parallelogram Mr. Chin-Sung Lin
15
Theorems of Parallelogram
L14_Properties of a Parallelogram ERHS Math Geometry Theorems of Parallelogram Theorem of Dividing Diagonals Theorem of Opposite Sides Theorem of Opposite Angles Theorem of Bisecting Diagonals Theorem of Consecutive Angles Mr. Chin-Sung Lin
16
Theorem of Dividing Diagonals
L14_Properties of a Parallelogram ERHS Math Geometry Theorem of Dividing Diagonals A diagonal divides a parallelogram into two congruent triangles If ABCD is a parallelogram, then ∆ ABD ∆ CDB A B D C Mr. Chin-Sung Lin
17
Theorem of Dividing Diagonals
L14_Properties of a Parallelogram ERHS Math Geometry Theorem of Dividing Diagonals 1 2 3 4 A B D C Statements Reasons 1. ABCD is a parallelogram 1. Given 2. AB || DC and AD || BC 2. Definition of parallelogram 3. 1 2 and 3 Alternate interior angles 4. BD BD Reflexive property 5. ∆ ABD ∆ CDB 5. ASA postulate Mr. Chin-Sung Lin
18
Theorem of Opposite Sides
L14_Properties of a Parallelogram ERHS Math Geometry Theorem of Opposite Sides Opposite sides of a parallelogram are congruent If ABCD is a parallelogram, then AB CD, and BC DA A B D C Mr. Chin-Sung Lin
19
Theorem of Opposite Sides
L14_Properties of a Parallelogram ERHS Math Geometry Theorem of Opposite Sides 1 2 3 4 A B D C Statements Reasons 1. ABCD is a parallelogram 1. Given 2. Connect BD 2. Form two triangles 3. AB || DC and AD || BC 3. Definition of parallelogram 4. 1 2 and 3 Alternate interior angles 5. BD BD Reflexive property 6. ∆ ABD ∆ CDB 6. ASA postulate 7. AB CD and BC DA 7. CPCTC Mr. Chin-Sung Lin
20
L14_Properties of a Parallelogram
ERHS Math Geometry Application Example 1 ABCD is a parallelogram, what’s the perimeter of ABCD ? A B 15 10 D C Mr. Chin-Sung Lin
21
L14_Properties of a Parallelogram
ERHS Math Geometry Application Example 1 ABCD is a parallelogram, what’s the perimeter of ABCD ? perimeter = 50 A B 15 10 D C Mr. Chin-Sung Lin
22
L14_Properties of a Parallelogram
ERHS Math Geometry Application Example 2 ABCD is a parallelogram, if the perimeter of ABCD is 80, solve for x A B x-20 10 D C Mr. Chin-Sung Lin
23
L14_Properties of a Parallelogram
ERHS Math Geometry Application Example 2 ABCD is a parallelogram, if the perimeter of ABCD is 80, solve for x x = 50 A B x-20 10 D C Mr. Chin-Sung Lin
24
Theorem of Opposite Angles
L14_Properties of a Parallelogram ERHS Math Geometry Theorem of Opposite Angles Opposite angles of a parallelogram are congruent If ABCD is a parallelogram, then A C, and B D A B D C Mr. Chin-Sung Lin
25
Theorem of Opposite Angles
L14_Properties of a Parallelogram ERHS Math Geometry Theorem of Opposite Angles A B D C Statements Reasons 1. ABCD is a parallelogram 1. Given 2. AB || DC and AD || BC 2. Definition of parallelogram 3. A and B are supplementary 3. Same side interior angles A and D are supplementary C and B are supplementary 4. A C Supplementary angle theorem B D
26
L14_Properties of a Parallelogram
ERHS Math Geometry Application Example 3 ABCD is a parallelogram, what are the values of x and y? A B 120o 60o y x D C Mr. Chin-Sung Lin
27
L14_Properties of a Parallelogram
ERHS Math Geometry Application Example 3 ABCD is a parallelogram, what are the values of x and y? x = 120o y = 60o A B 120o 60o y x D C Mr. Chin-Sung Lin
28
L14_Properties of a Parallelogram
ERHS Math Geometry Application Example 4 ABCD is a parallelogram, what are the values of x and y? A B X+20 y - 20 180 - y 2x - 60 D C Mr. Chin-Sung Lin
29
L14_Properties of a Parallelogram
ERHS Math Geometry Application Example 4 ABCD is a parallelogram, what are the values of x and y? x = 80o y = 100o A B X+20 y - 20 180 - y 2x - 60 D C Mr. Chin-Sung Lin
30
Theorem of Bisecting Diagonals
L14_Properties of a Parallelogram ERHS Math Geometry Theorem of Bisecting Diagonals The diagonals of a parallelogram bisect each other If ABCD is a parallelogram, then AC and BD bisect each other at O A B D C O Mr. Chin-Sung Lin
31
Theorem of Bisecting Diagonals
L14_Properties of a Parallelogram ERHS Math Geometry Theorem of Bisecting Diagonals 1 2 3 4 A B D C O Statements Reasons 1. ABCD is a parallelogram 1. Given 2. AB || DC Definition of parallelogram 3. 1 2 and 3 Alternate interior angles 4. AB DC Opposite sides congruent 5. ∆ AOB ∆ COD 5. ASA postulate 6. AO = OC and BO = OD 6. CPCTC 7. AC and BD bisect each other 7. Definition of segment bisector Mr. Chin-Sung Lin
32
L14_Properties of a Parallelogram
ERHS Math Geometry Application Example 5 ABCD is a parallelogram, if AO = 3, BO = 4 AB = 6, AC + BD = ? A B 6 3 4 O D C Mr. Chin-Sung Lin
33
L14_Properties of a Parallelogram
ERHS Math Geometry Application Example 5 ABCD is a parallelogram, if AO = 3, BO = 4 AB = 6, AC + BD = ? AC + BD = 24 A B 6 3 4 O D C Mr. Chin-Sung Lin
34
L14_Properties of a Parallelogram
ERHS Math Geometry Application Example 6 ABCD is a parallelogram, if AO = x+4, BO = 2y-6, CO = 3x-4, an DO = y+2, solve for x and y A B x+4 2y-6 O y+2 3x-4 D C Mr. Chin-Sung Lin
35
L14_Properties of a Parallelogram
ERHS Math Geometry Application Example 6 ABCD is a parallelogram, if AO = x+4, BO = 2y-6, CO = 3x-4, an DO = y+2, solve for x and y x = 4 y = 8 A B x+4 2y-6 O y+2 3x-4 D C Mr. Chin-Sung Lin
36
Theorem of Consecutive Angles
L14_Properties of a Parallelogram ERHS Math Geometry Theorem of Consecutive Angles The consecutive angles of a parallelogram are supplementary If ABCD is a parallelogram, then A and B are supplementary C and D are supplementary A and D are supplementary B and C are supplementary A B D C Mr. Chin-Sung Lin
37
Theorem of Consecutive Angles
L14_Properties of a Parallelogram ERHS Math Geometry Theorem of Consecutive Angles A B Statements Reasons 1. ABCD is a parallelogram 1. Given 2. AB || DC and AD || BC 2. Definition of parallelogram 3. A and B, C and D Same-side interior angles A and D, B and C are supplementary are supplementary D C Mr. Chin-Sung Lin
38
L14_Properties of a Parallelogram
ERHS Math Geometry Application Example 7 ABCD is a parallelogram, what are the values of x, y and z? A B 120o x z y D C Mr. Chin-Sung Lin
39
L14_Properties of a Parallelogram
ERHS Math Geometry Application Example 7 ABCD is a parallelogram, what are the values of x, y and z? x = 60o y = 120o z = 60o A B 120o x z y D C Mr. Chin-Sung Lin
40
L14_Properties of a Parallelogram
ERHS Math Geometry Application Example 8 ABCD is a parallelogram, what are the values of x and y? A B X+30 X-30 Y+20 D C Mr. Chin-Sung Lin
41
L14_Properties of a Parallelogram
ERHS Math Geometry Application Example 8 ABCD is a parallelogram, what are the values of x and y? x = 90o y = 100o A B X+30 X-30 Y+20 D C Mr. Chin-Sung Lin
42
L14_Properties of a Parallelogram
ERHS Math Geometry Group Work Mr. Chin-Sung Lin
43
L14_Properties of a Parallelogram
ERHS Math Geometry Question 1 ABCD is a parallelogram, calculate the perimeter of ABCD A B x+30 2y-10 y+10 D 2x-10 C Mr. Chin-Sung Lin
44
L14_Properties of a Parallelogram
ERHS Math Geometry Question 1 ABCD is a parallelogram, calculate the perimeter of ABCD perimeter = 200 A B x+30 2y-10 y+10 D 2x-10 C Mr. Chin-Sung Lin
45
L14_Properties of a Parallelogram
ERHS Math Geometry Question 2 ABCD is a parallelogram, solve for x A B X+30 X-10 O X+10 2X D C Mr. Chin-Sung Lin
46
L14_Properties of a Parallelogram
ERHS Math Geometry Question 2 ABCD is a parallelogram, solve for x x = 30 A B X+30 X-10 O X+10 2X D C Mr. Chin-Sung Lin
47
L14_Properties of a Parallelogram
ERHS Math Geometry Question 3 Given: ABCD is a parallelogram Prove: XO YO A B D C O Y X Mr. Chin-Sung Lin
48
L14_Properties of a Parallelogram
ERHS Math Geometry Question 4 Given: ABCD is a parallelogram, BO OD Prove: EO OF A E B O D F C Mr. Chin-Sung Lin
49
L14_Properties of a Parallelogram
ERHS Math Geometry Question 5 Given: ABCD is a parallelogram, AF || CE Prove: FAB ECD A B E F D C Mr. Chin-Sung Lin
50
Review: Theorems of Parallelogram
L14_Properties of a Parallelogram ERHS Math Geometry Review: Theorems of Parallelogram Theorem of Dividing Diagonals Theorem of Opposite Sides Theorem of Opposite Angles Theorem of Bisecting Diagonals Theorem of Consecutive Angles Mr. Chin-Sung Lin
51
Prove Quadrilaterals are Parallelograms
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry Prove Quadrilaterals are Parallelograms Mr. Chin-Sung Lin
52
Criteria for Proving Parallelograms
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry Criteria for Proving Parallelograms Parallel opposite sides Congruent opposite sides Congruent & parallel opposite sides Congruent opposite angles Supplementary consecutive angles Bisecting diagonals Mr. Chin-Sung Lin
53
Parallel Opposite Sides
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry Parallel Opposite Sides If both pairs of opposite sides of a quadrilateral are parallel, then the quadrilateral is a parallelogram If AB || CD, and BC || DA then, ABCD is a parallelogram A B D C Mr. Chin-Sung Lin
54
Parallel Opposite Sides
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry Parallel Opposite Sides A B D C Statements Reasons 1. AB || CD and BC || DA 1. Given 2. ABCD is a parallelogram 2. Definition of parallelogram Mr. Chin-Sung Lin
55
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Application Example 1 If m1 = m2 = m3, then ABCD is a parallelogram A B 1 2 3 D C Mr. Chin-Sung Lin
56
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Application Example 2 ABCD is a quadrilateral as shown below, solve for x A B 3x-20 50o 60o 60o 50o D 2x+10 C Mr. Chin-Sung Lin
57
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Application Example 2 ABCD is a quadrilateral as shown below, solve for x x = 30 A B 3x-20 50o 60o 60o 50o D 2x+10 C Mr. Chin-Sung Lin
58
Congruent Opposite Sides
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry Congruent Opposite Sides If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram If AB CD, and BC DA then, ABCD is a parallelogram A B D C Mr. Chin-Sung Lin
59
Congruent Opposite Sides
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry Congruent Opposite Sides If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram If AB CD, and BC DA then, ABCD is a parallelogram A B D C Mr. Chin-Sung Lin
60
Congruent Opposite Sides
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry Congruent Opposite Sides 1 2 3 4 A B D C Statements Reasons 1. Connect BD 1. Form two triangles 2. AB CD and BC DA 2. Given 3. BD BD Reflexive property 4. ∆ ABD ∆ CDB 4. SSS postulate 5. 1 2 and 3 CPCTC 6. AB || DC and AD || BC 6. Converse of alternate interior angles theorem 7. ABCD is a parallelogram 7. Definition of parallelogram Mr. Chin-Sung Lin
61
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Application Example 3 ABCD is a quadrilateral, solve for x A B 15 X+50 10 10 2x-30 D C 15 Mr. Chin-Sung Lin
62
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Application Example 3 ABCD is a quadrilateral, solve for x x = 80 A B 15 X+50 10 10 2x-30 D C 15 Mr. Chin-Sung Lin
63
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Application Example 4 ABCD is a parallelogram, if DF = BE, then AECF is also a parallelogram A B D C E F Mr. Chin-Sung Lin
64
Congruent & Parallel Opposite Sides
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry Congruent & Parallel Opposite Sides If one pair of opposite sides of a quadrilateral are both congruent and parallel, then the quadrilateral is a parallelogram If AB CD, and AB || CD then, ABCD is a parallelogram A B D C Mr. Chin-Sung Lin
65
Congruent & Parallel Opposite Sides
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry Congruent & Parallel Opposite Sides 1 2 3 4 A B D C Statements Reasons 1. Connect BD 1. Form two triangles 2. AB CD and AB || CD 2. Given 3. BD BD Reflexive property 4. 1 Alternate interior angles 5. ∆ ABD ∆ CDB 5. SAS postulate 6. 3 CPCTC 7. AD || BC Converse of alternate interior angles theorem 8. ABCD is a parallelogram 8. Definition of parallelogram Mr. Chin-Sung Lin
66
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Application Example 5 ABCD is a quadrilateral, solve for x and y A B X+5 y+50 30o 10 10 30o 2y-20 D C Mr. Chin-Sung Lin
67
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Application Example 5 ABCD is a quadrilateral, solve for x and y x = 5 y = 70o A B X+5 y+50o 30o 10 10 30o 2y-20o D C Mr. Chin-Sung Lin
68
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Application Example 6 ABCD is a parallelogram, if m1 = m2, then AECF is also a parallelogram A B D C E F 1 2 Mr. Chin-Sung Lin
69
Congruent Opposite Angles
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry Congruent Opposite Angles If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram If A C, and B D Then, ABCD is a parallelogram A B D C Mr. Chin-Sung Lin
70
Congruent Opposite Angles
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry Congruent Opposite Angles 1 2 3 4 A B D C Statements Reasons 1. Connect BD 1. Form two triangles 2. m1 +m4 + mA Triangle angle-sum theorem m2 +m3 + mB 180 3. m1 +m4 + mA Addition property m2 +m3 + mC 360 4. m1 +m3 = mB 4. Partition property m4 +m2 = mD 5. mA +mB + mC + mD Substitution property = 360 Mr. Chin-Sung Lin
71
Congruent Opposite Angles
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry Congruent Opposite Angles 1 2 3 4 A B D C Statements Reasons 6. A C and B D Given 7. 2mA + 2mB = Substitution property 2mA + 2mD = 360 8. mA + mB = Division property mA + mD = 180 9. AD || BC, AB || DC 9. Converse of same-side interior angles 10. ABCD is a parallelogram 10. Definition of parallelogram Mr. Chin-Sung Lin
72
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Application Example 7 ABCD is a quadrilateral, solve for x A B X+30 130o 50o 50o 130o D 2x-40 C Mr. Chin-Sung Lin
73
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Application Example 7 ABCD is a quadrilateral, solve for x x = 70 A B X+30 130o 50o 50o 130o D 2x-40 C Mr. Chin-Sung Lin
74
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Application Example 8 if m1 = m2, m3 = m4, then ABCD is a parallelogram A B 1 4 3 C D 2 Mr. Chin-Sung Lin
75
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Bisecting Diagonals If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram If AC and BD bisect each other at O, then, ABCD is a parallelogram A B D C O Mr. Chin-Sung Lin
76
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Bisecting Diagonals 1 2 3 4 A B D C O Statements Reasons 1. AC and BD bisect at O 1. Given 2. AO CO and BO DO 2. Def. of segment bisector 3. AOB COD, AOD COB Vertical angles 4. ∆AOB ∆COD, ∆AOD ∆COB SAS postulate 5. 1 2 and 3 CPCTC 6. AB || DC and AD || BC 6. Converse of alternate interior angles theorem 7. ABCD is a parallelogram 7. Definition of parallelogram Mr. Chin-Sung Lin
77
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Application Example 9 ∆ AOB ∆ COD, then ABCD is a parallelogram A B D C O Mr. Chin-Sung Lin
78
Supplementary Consecutive Angles
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry Supplementary Consecutive Angles If an angle of a quadrilateral is supplementary to both of its consecutive angles, then the quadrilateral is a parallelogram If A and B are supplementary A and D are supplementary then, ABCD is a parallelogram A B D C Mr. Chin-Sung Lin
79
Supplementary Consecutive Angles
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry Supplementary Consecutive Angles A B D C Statements Reasons 1. A and B, A and D Given are supplementary 2. AB || DC and AD || BC Converse of same-side interior angles theorem 3. ABCD is a parallelogram Definition of parallelogram Mr. Chin-Sung Lin
80
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Application Example 10 ABCD is a quadrilateral, solve for x A B D C 2x+80 2(x+45)-10 100-2x 3x Mr. Chin-Sung Lin
81
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Application Example 10 ABCD is a quadrilateral, solve for x x = 20 A B D C 2x+80 2(x+45)-10 100-2x 3x Mr. Chin-Sung Lin
82
Review: Proving Parallelograms
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry Review: Proving Parallelograms Parallel opposite sides Congruent opposite sides Congruent & parallel opposite sides Congruent opposite angles Supplementary consecutive angles Bisecting diagonals Mr. Chin-Sung Lin
83
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Rectangles Mr. Chin-Sung Lin
84
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Rectangles A rectangle is a parallelogram containing one right angle A B C D Mr. Chin-Sung Lin
85
All Angles Are Right Angles
L17_Rectangles Rhombuses and Squares ERHS Math Geometry All Angles Are Right Angles All angles of a rectangle are right angles Given: ABCD is a rectangle with A = 90o Prove: B = 90o, C = 90o, D = 90o A B C D Mr. Chin-Sung Lin
86
All Angles Are Right Angles
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry All Angles Are Right Angles A B C D Statements Reasons 1. ABCD is a rectangle & A = 90o 1. Given 2. C = 90o Opposite angles 3. mA + mD = Consecutive angles mA + mB = 180 mD = Substitution 90 + mB = 180 5. mB = 90, mD = Subtraction 6. B = 90o, D = 90o 6. Def. of measurement of angles Mr. Chin-Sung Lin
87
All Angles Are Right Angles
L17_Rectangles Rhombuses and Squares ERHS Math Geometry All Angles Are Right Angles The diagonals of a rectangle are congruent Given: ABCD is a rectangle Prove: AC BD A B C D Mr. Chin-Sung Lin
88
All Angles Are Right Angles
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry All Angles Are Right Angles A B C D Statements Reasons 1. ABCD is a rectangle 1. Given 2. C = 90o, D = 90o 2. All angles are right angles 3. C D Substitution 4. DC DC Reflexive 5. AD BC Opposite sides 6. ∆ADC ∆BCD 6. SAS postulate 7. AC BD CPCTC Mr. Chin-Sung Lin
89
Properties of Rectangle
L17_Rectangles Rhombuses and Squares ERHS Math Geometry Properties of Rectangle The properties of a rectangle All the properties of a parallelogram Four right angles (equiangular) Congruent diagonals A B C D Mr. Chin-Sung Lin
90
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Proving Rectangles Mr. Chin-Sung Lin
91
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Proving Rectangles To show that a quadrilateral is a rectangle, by showing that the quadrilateral is equiangular or a parallelogram that contains a right angle, or with congruent diagonals If a parallelogram does not contain a right angle, or doesn’t have congruent diagonals, then it is not a rectangle Mr. Chin-Sung Lin
92
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry A B C D Proving Rectangles If one angle of a parallelogram is a right angle, then the parallelogram is a rectangle Given: ABCD is a parallelogram and mA = 90 Prove: ABCD is a rectangle Mr. Chin-Sung Lin
93
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry A B C D Proving Rectangles If a quadrilateral is equiangular, it is a rectangle Given: ABCD is a quadrangular & mA = mB = mC = mD Prove: ABCD is a rectangle Mr. Chin-Sung Lin
94
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry A B C D O Proving Rectangles The diagonals of a parallelogram are congruent Given: AC BD Prove: ABCD is a rectangle Mr. Chin-Sung Lin
95
ERHS Math Geometry Application Example ABCD is a parallelogram, mA = 6x - 30 and mC = 4x Show that ABCD is a rectangle A B C D Mr. Chin-Sung Lin
96
ERHS Math Geometry Application Example ABCD is a parallelogram, mA = 6x - 30 and mC = 4x Show that ABCD is a rectangle x =20 mA = 90 ABCD is a rectangle A B C D Mr. Chin-Sung Lin
97
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Rhombuses Mr. Chin-Sung Lin
98
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Rhombus A rhombus is a parallelogram that has two congruent consecutive sides A B C D Mr. Chin-Sung Lin
99
All Sides Are Congruent
L17_Rectangles Rhombuses and Squares ERHS Math Geometry All Sides Are Congruent All sides of a rhombus are congruent Given: ABCD is a rhombus with AB DA Prove: AB BC CD DA A B C D Mr. Chin-Sung Lin
100
All Sides Are Congruent
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry All Sides Are Congruent A B C D Statements Reasons 1. ABCD is a rhombus w. AB DA 1. Given 2. AB DC, AD BC 2. Opposite sides are congruent 3. AB BC CD DA 3. Transitive Mr. Chin-Sung Lin
101
Perpendicular Diagonals
L17_Rectangles Rhombuses and Squares ERHS Math Geometry Perpendicular Diagonals The diagonals of a rhombus are perpendicular to each other Given: ABCD is a rhombus Prove: AC BD A B C D O Mr. Chin-Sung Lin
102
Perpendicular Diagonals
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry A B C D O Perpendicular Diagonals Statements Reasons 1. ABCD is a rhombus 1. Given 2. AO AO Reflexive 3. AD AB Congruent sides 4. BO DO Bisecting diagonals 5. ∆AOD ∆AOB 5. SSS postulate 6. AOD AOB 6. CPCTC 7. mAOD + mAOB = Supplementary angles 8. 2mAOD = Substitution 9. AOD = 90o Division pustulate 10. AC BD Definition of perpendicular
103
Diagonals Bisecting Angles
L17_Rectangles Rhombuses and Squares ERHS Math Geometry Diagonals Bisecting Angles The diagonals of a rhombus bisect its angles Given: ABCD is a rhombus Prove: AC bisects DAB and DCB DB bisects CDA and CBA A B C D Mr. Chin-Sung Lin
104
Diagonals Bisecting Angles
L15_Proving Quadrilaterals Are Parallelograms ERHS Math Geometry A B C D Diagonals Bisecting Angles Statements Reasons 1. ABCD is a rhombus 1. Given 2. AD AB, DC BC 2. Congruent sides AD DC, AB BC 3. AC AC, DB DB 3. Reflexive postulate 4. ∆ACD ∆ACB, ∆BAD ∆BCD 4. SSS postulate 5. DAC BAC, DCA BCA 5. CPCTC ADB CDB, ABD CBD 6. AC bisects DAB and DCB 6. Definition of angle bisector DB bisects CDA and CBA Mr. Chin-Sung Lin
105
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Properties of Rhombus A B C D The properties of a rhombus All the properties of a parallelogram Four congruent sides (equilateral) Perpendicular diagonals Diagonals that bisect opposite pairs of angles Mr. Chin-Sung Lin
106
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Proving Rhombus Mr. Chin-Sung Lin
107
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Proving Rhombus To show that a quadrilateral is a rhombus, by showing that the quadrilateral is equilateral or a parallelogram that contains two congruent consecutive sides with perpendicular diagonals, or with diagonals bisecting opposite angles If a parallelogram does not contain two congruent consecutive sides, or doesn’t have perpendicular diagonals, then it is not a rectangle Mr. Chin-Sung Lin
108
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry A B C D Proving Rhombus If a parallelogram has two congruent consecutive sides, then the parallelogram is a rhombus Given: ABCD is a parallelogram and AB DA Prove: ABCD is a rhombus Mr. Chin-Sung Lin
109
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry A B C D Proving Rhombus If a quadrilateral is equilateral, it is a rhombus Given: ABCD is a parallelogram and AB BC CD DA Prove: ABCD is a rhombus Mr. Chin-Sung Lin
110
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry A B C D Proving Rhombus The diagonals of a parallelogram are perpendicular Given: AC BD Prove: ABCD is a rhombus Mr. Chin-Sung Lin
111
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry A B C D 1 2 3 4 Proving Rhombus Each diagonal of a rhombus bisects two angles of the rhombus Given: AC bisects DAB and DCB Prove: ABCD is a rhombus Mr. Chin-Sung Lin
112
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Application Example ABCD is a parallelogram. AB = 2x + 1, DC = 3x - 11, AD = x + 13 Prove: ABCD is a rhombus A B 2x+1 x+13 D 3x-11 C Mr. Chin-Sung Lin
113
L15_Proving Quadrilaterals Are Parallelograms
ERHS Math Geometry Application Example ABCD is a parallelogram. AB = 2x + 1, DC = 3x - 11, AD = x + 13 Prove: ABCD is a rhombus x = 12 AB = AD = 25 ABCD is a rhombus A B 2x+1 x+13 D 3x-11 C Mr. Chin-Sung Lin
114
ERHS Math Geometry Application Example ABCD is a parallelogram, AB = 3x - 2, BC = 2x + 2, and CD = x + 6. Show that ABCD is a rhombus A B C D Mr. Chin-Sung Lin
115
ERHS Math Geometry Application Example ABCD is a parallelogram, AB = 3x - 2, BC = 2x + 2, and CD = x + 6. Show that ABCD is a rhombus x = 4 AB = BC = 10 ABCD is a rhombus A B C D Mr. Chin-Sung Lin
116
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Squares Mr. Chin-Sung Lin
117
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Squares A square is a rectangle that has two congruent consecutive sides A B C D Mr. Chin-Sung Lin
118
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Squares A square is a rectangle with four congruent sides (an equilateral rectangle) A B C D Mr. Chin-Sung Lin
119
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Squares A square is a rhombus with four right angles (an equiangular rhombus) A B C D Mr. Chin-Sung Lin
120
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Squares A square is an equilateral quadrilateral A square is an equiangular quadrilateral A B C D Mr. Chin-Sung Lin
121
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Squares A square is a rhombus A square is a rectangle A B C D Mr. Chin-Sung Lin
122
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Properties of Square The properties of a square All the properties of a parallelogram All the properties of a rectangle All the properties of a rhombus A B C D Mr. Chin-Sung Lin
123
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Proving Squares Mr. Chin-Sung Lin
124
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Proving Squares A B C D If a rectangle has two congruent consecutive sides, then the rectangle is a square Given: ABCD is a rectangle and AB DA Prove: ABCD is a square Mr. Chin-Sung Lin
125
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Proving Squares A B C D If one of the angles of a rhombus is a right angle, then the rhombus is a square Given: ABCD is a rhombus and A = 90o Prove: ABCD is a square Mr. Chin-Sung Lin
126
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Proving Squares To show that a quadrilateral is a square, by showing that the quadrilateral is a rectangle with a pair of congruent consecutive sides, or a rhombus that contains a right angle Mr. Chin-Sung Lin
127
ERHS Math Geometry Application Example ABCD is a square, mA = 4x - 30, AB = 3x + 10 and BC = 4y. Solve x and y A B C D Mr. Chin-Sung Lin
128
ERHS Math Geometry Application Example ABCD is a square, mA = 4x - 30, AB = 3x + 10 and BC = 4y. Solve x and y 4x – 30 = 90 x = 30 y = 25 A B C D Mr. Chin-Sung Lin
129
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Review Questions Mr. Chin-Sung Lin
130
ERHS Math Geometry Question 1 A parallelogram where all angles are right angles (90o) is a _________? Mr. Chin-Sung Lin
131
Rectangle Question 1 Answer
ERHS Math Geometry Question 1 Answer A parallelogram where all angles are right angles (90o) is a _________? Rectangle Mr. Chin-Sung Lin
132
ERHS Math Geometry Question 2 A parallelogram where all sides are congruent is a _________? Mr. Chin-Sung Lin
133
Rhombus Question 2 Answer
ERHS Math Geometry Question 2 Answer A parallelogram where all sides are congruent is a _________? Rhombus Mr. Chin-Sung Lin
134
Question 3 A rectangle with four congruent sides is a _________?
ERHS Math Geometry Question 3 A rectangle with four congruent sides is a _________? Mr. Chin-Sung Lin
135
Square Question 3 Answer
ERHS Math Geometry Question 3 Answer A rectangle with four congruent sides is a _________? Square Mr. Chin-Sung Lin
136
Question 4 A rhombus with four right angles is a _________?
ERHS Math Geometry Question 4 A rhombus with four right angles is a _________? Mr. Chin-Sung Lin
137
Square Question 4 Answer
ERHS Math Geometry Question 4 Answer A rhombus with four right angles is a _________? Square Mr. Chin-Sung Lin
138
Question 5 A parallelogram with congruent diagonals is a _________?
ERHS Math Geometry Question 5 A parallelogram with congruent diagonals is a _________? Mr. Chin-Sung Lin
139
Rectangle Question 5 Answer
ERHS Math Geometry Question 5 Answer A parallelogram with congruent diagonals is a _________? Rectangle Mr. Chin-Sung Lin
140
ERHS Math Geometry Question 6 A parallelogram where all angles are right angles and all sides are congruent is a _________? Mr. Chin-Sung Lin
141
Square Question 6 Answer
ERHS Math Geometry Question 6 Answer A parallelogram where all angles are right angles and all sides are congruent is a _________? Square Mr. Chin-Sung Lin
142
ERHS Math Geometry Question 7 A parallelogram with perpendicular diagonals is a _________? Mr. Chin-Sung Lin
143
Rhombus Question 7 Answer
ERHS Math Geometry Question 7 Answer A parallelogram with perpendicular diagonals is a _________? Rhombus Mr. Chin-Sung Lin
144
ERHS Math Geometry Question 8 A parallelogram whose diagonals bisect opposite pairs of angles is a ______? Mr. Chin-Sung Lin
145
Rhombus Question 8 Answer
ERHS Math Geometry Question 8 Answer A parallelogram whose diagonals bisect opposite pairs of angles is a ______? Rhombus Mr. Chin-Sung Lin
146
ERHS Math Geometry Question 9 A quadrilateral which is both rectangle and rhombus is a _________? Mr. Chin-Sung Lin
147
Square Question 9 Answer
ERHS Math Geometry Question 9 Answer A quadrilateral which is both rectangle and rhombus is a _________? Square Mr. Chin-Sung Lin
148
Question 10 Choose the right answer(s): A parallelogram is a rhombus
ERHS Math Geometry Question 10 Choose the right answer(s): A parallelogram is a rhombus A rectangle is a square A rhombus is a parallelogram Mr. Chin-Sung Lin
149
Question 10 Answer Choose the right answer(s):
ERHS Math Geometry Question 10 Answer Choose the right answer(s): A parallelogram is a rhombus A rectangle is a square A rhombus is a parallelogram Mr. Chin-Sung Lin
150
Question 11 Choose the right answer(s):
ERHS Math Geometry Question 11 Choose the right answer(s): A quadrilateral is a parallelogram A square is a rhombus A rectangle is a rhombus Mr. Chin-Sung Lin
151
Question 11 Answer Choose the right answer(s):
ERHS Math Geometry Question 11 Answer Choose the right answer(s): A quadrilateral is a parallelogram A square is a rhombus A rectangle is a rhombus Mr. Chin-Sung Lin
152
Question 12 Choose the right answer(s): A rectangle is a parallelogram
ERHS Math Geometry Question 12 Choose the right answer(s): A rectangle is a parallelogram A square is a rectangle A rhombus is a square Mr. Chin-Sung Lin
153
Question 12 Answer Choose the right answer(s):
ERHS Math Geometry Question 12 Answer Choose the right answer(s): A rectangle is a parallelogram A square is a rectangle A rhombus is a square Mr. Chin-Sung Lin
154
L17_Rectangles Rhombuses and Squares
ERHS Math Geometry Trapezoids Mr. Chin-Sung Lin
155
Definitions of Trapezoids
L18_Trapezoids ERHS Math Geometry Definitions of Trapezoids Mr. Chin-Sung Lin
156
L18_Trapezoids ERHS Math Geometry Trapezoids A trapezoid is a quadrilateral that has exactly one pair of parallel sides The parallel sides of a trapezoid are called bases. The nonparallel sides of a trapezoid are the legs A B C D Upper base Lower base Leg Mr. Chin-Sung Lin
157
L18_Trapezoids ERHS Math Geometry Isosceles Trapezoids A trapezoid whose nonparallel sides are congruent is called an isosceles trapezoid A B C D Upper base Lower base Leg Mr. Chin-Sung Lin
158
L18_Trapezoids ERHS Math Geometry Median of a Trapezoid The median of a trapezoid is the line segment connecting the midpoints of the nonparallel sides A B C D Upper base Lower base Median Mr. Chin-Sung Lin
159
Examples of Trapezoids
L18_Trapezoids ERHS Math Geometry Examples of Trapezoids C A B D 100o 80o 120o 60o 90o D C B A 110o 70o 45o 135o D C B A 110o 70o 120o 60o D C B A Mr. Chin-Sung Lin
160
Exercise - Trapezoids Which one is a trapezoid? Why? B D A A C C D B
L18_Trapezoids ERHS Math Geometry Exercise - Trapezoids Which one is a trapezoid? Why? 110o 75o 45o 130o D C B A 105o 75o D C B A Mr. Chin-Sung Lin
161
Exercise - Trapezoids Which one is a trapezoid? Why? B D A A C C D B
L18_Trapezoids ERHS Math Geometry Exercise - Trapezoids Which one is a trapezoid? Why? 110o 75o 45o 130o D C B A 105o 75o D C B A Mr. Chin-Sung Lin
162
Exercise - Trapezoids Which one is a trapezoid? A D B A B C D C
L18_Trapezoids ERHS Math Geometry Exercise - Trapezoids Which one is a trapezoid? 110o 65o 120o D C B A C A B D 90o 80o 100o Mr. Chin-Sung Lin
163
Exercise - Trapezoids Which one is a trapezoid? A D B A B C D C
L18_Trapezoids ERHS Math Geometry Exercise - Trapezoids Which one is a trapezoid? 110o 65o 120o D C B A C A B D 90o 80o 100o Mr. Chin-Sung Lin
164
Properties of Isosceles Trapezoids
L18_Trapezoids ERHS Math Geometry Properties of Isosceles Trapezoids Mr. Chin-Sung Lin
165
Properties of Isosceles Trapezoids
L18_Trapezoids ERHS Math Geometry Properties of Isosceles Trapezoids The properties of a isosceles trapezoid Base angles are congruent Diagonals are congruent The property of a trapezoid Median is parallel to and average of the bases Mr. Chin-Sung Lin
166
L18_Trapezoids ERHS Math Geometry Congruent Base Angles In an isosceles trapezoid the two angles whose vertices are the endpoints of either base are congruent The upper and lower base angles are congruent Given: Isosceles trapezoid ABCD AB || CD and AD BC Prove: A B; C D A B C D Mr. Chin-Sung Lin
167
Congruent Base Angles Given: Isosceles trapezoid ABCD
L18_Trapezoids ERHS Math Geometry Congruent Base Angles Given: Isosceles trapezoid ABCD AB || CD and AD BC Prove: A B; C D E A B C D A B C D Mr. Chin-Sung Lin
168
L18_Trapezoids ERHS Math Geometry Congruent Diagonals The diagonals of an isosceles trapezoid are congruent Given: Isosceles trapezoid ABCD AB || CD and AD BC Prove: AC BD A B C D Mr. Chin-Sung Lin
169
Congruent Diagonals Given: Isosceles trapezoid ABCD
L18_Trapezoids ERHS Math Geometry Congruent Diagonals Given: Isosceles trapezoid ABCD AB || CD and AD BC Prove: AC BD A B C D Mr. Chin-Sung Lin
170
Parallel and Average Median
L18_Trapezoids ERHS Math Geometry Parallel and Average Median The median of a trapezoid is parallel to the bases, and its length is half the sum of the lengths of the bases Given: Isosceles trapezoid ABCD AB || CD and median EF Prove: AB || EF , CD || EF and EF = (1/2)(AB + CD) A B C D E F Mr. Chin-Sung Lin
171
Parallel and Average Median
L18_Trapezoids ERHS Math Geometry Parallel and Average Median Given: Isosceles trapezoid ABCD AB || CD and median EF Prove: AB || EF , CD || EF and EF = (1/2)(AB + CD) A B C D H F E G Mr. Chin-Sung Lin
172
L18_Trapezoids ERHS Math Geometry Proving Trapezoids Mr. Chin-Sung Lin
173
L18_Trapezoids ERHS Math Geometry Proving Trapezoids To prove that a quadrilateral is a trapezoid, show that two sides are parallel and the other two sides are not parallel To prove that a quadrilateral is not a trapezoid, show that both pairs of opposite sides are parallel or that both pairs of opposite sides are not parallel Mr. Chin-Sung Lin
174
Proving Isosceles Trapezoids
L18_Trapezoids ERHS Math Geometry Proving Isosceles Trapezoids To prove that a trapezoid is an isosceles trapezoid, show that one of the following statements is true: The legs are congruent The lower/upper base angles are congruent The diagonals are congruent Mr. Chin-Sung Lin
175
Application Examples ERHS Math Geometry Mr. Chin-Sung Lin
L18_Trapezoids ERHS Math Geometry Application Examples Mr. Chin-Sung Lin
176
Numeric Example of Trapezoids
L18_Trapezoids ERHS Math Geometry Numeric Example of Trapezoids Isosceles Trapezoid ABCD, AB || CD and AD BC Solve for x and y A B C D 2xo xo 3yo Mr. Chin-Sung Lin
177
Numeric Example of Trapezoids
L18_Trapezoids ERHS Math Geometry Numeric Example of Trapezoids Isosceles Trapezoid ABCD, AB || CD and AD BC Solve for x and y x = 60 y = 20 A B C D 2xo xo 3yo Mr. Chin-Sung Lin
178
Numeric Example of Trapezoids
L18_Trapezoids ERHS Math Geometry Numeric Example of Trapezoids Trapezoid ABCD, AB || CD and median EF Solve for x A B C D E F 2x 2x + 4 3x + 2 Mr. Chin-Sung Lin
179
Numeric Example of Trapezoids
L18_Trapezoids ERHS Math Geometry Numeric Example of Trapezoids Trapezoid ABCD, AB || CD and median EF Solve for x x = 6 A B C D E F 2x 2x + 4 3x + 2 Mr. Chin-Sung Lin
180
Proving Isosceles Trapezoids
L18_Trapezoids ERHS Math Geometry Proving Isosceles Trapezoids Given: Trapezoid ABCD and A B Prove: ABCD is an isosceles trapezoid A B C D Mr. Chin-Sung Lin
181
Proving Isosceles Trapezoids
L18_Trapezoids ERHS Math Geometry Proving Isosceles Trapezoids Given: Trapezoid ABCD and AC BD Prove: ABCD is an isosceles trapezoid A B C D O Mr. Chin-Sung Lin
182
Proving Isosceles Trapezoids
L18_Trapezoids ERHS Math Geometry Proving Isosceles Trapezoids Given: Trapezoid ABCD, AB || CD and AE BE Prove: ABCD is an isosceles trapezoid A B C D E Mr. Chin-Sung Lin
183
Summary of Quadrilaterals
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Summary of Quadrilaterals Mr. Chin-Sung Lin
184
Properties of Quadrilaterals - 1
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Properties of Quadrilaterals - 1 Properties Cong. Oppo. Sides (1 P) Cong. Oppo. Sides (2 P) Cong. Four Sides Parallel Oppo. Sides (1P) Parallel Oppo. Sides (2P) Mr. Chin-Sung Lin
185
Properties of Quadrilaterals - 1
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Properties of Quadrilaterals - 1 Properties Cong. Oppo. Sides (1 P) Cong. Oppo. Sides (2 P) Cong. Four Sides Parallel Oppo. Sides (1P) Parallel Oppo. Sides (2P) Mr. Chin-Sung Lin
186
Properties of Quadrilaterals - 1
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Properties of Quadrilaterals - 1 Properties Cong. Oppo. Sides (1 P) Cong. Oppo. Sides (2 P) Cong. Four Sides Parallel Oppo. Sides (1P) Parallel Oppo. Sides (2P) Mr. Chin-Sung Lin
187
Properties of Quadrilaterals - 1
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Properties of Quadrilaterals - 1 Properties Cong. Oppo. Sides (1 P) Cong. Oppo. Sides (2 P) Cong. Four Sides Parallel Oppo. Sides (1P) Parallel Oppo. Sides (2P) Mr. Chin-Sung Lin
188
Properties of Quadrilaterals - 1
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Properties of Quadrilaterals - 1 Properties Cong. Oppo. Sides (1 P) Cong. Oppo. Sides (2 P) Cong. Four Sides Parallel Oppo. Sides (1P) Parallel Oppo. Sides (2P) Mr. Chin-Sung Lin
189
Properties of Quadrilaterals - 1
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Properties of Quadrilaterals - 1 Properties Cong. Oppo. Sides (1 P) Cong. Oppo. Sides (2 P) Cong. Four Sides Parallel Oppo. Sides (1P) Parallel Oppo. Sides (2P) Mr. Chin-Sung Lin
190
Properties of Quadrilaterals - 2
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Properties of Quadrilaterals - 2 Properties Cong. Diagonals Bisecting Diagonals Perpendicular Diagonals Cong. Opposite Angles Supp. Opposite Angles Mr. Chin-Sung Lin
191
Properties of Quadrilaterals - 2
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Properties of Quadrilaterals - 2 Properties Cong. Diagonals Bisecting Diagonals Perpendicular Diagonals Cong. Opposite Angles Supp. Opposite Angles Mr. Chin-Sung Lin
192
Properties of Quadrilaterals - 2
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Properties of Quadrilaterals - 2 Properties Cong. Diagonals Bisecting Diagonals Perpendicular Diagonals Cong. Opposite Angles Supp. Opposite Angles Mr. Chin-Sung Lin
193
Properties of Quadrilaterals - 2
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Properties of Quadrilaterals - 2 Properties Cong. Diagonals Bisecting Diagonals Perpendicular Diagonals Cong. Opposite Angles Supp. Opposite Angles Mr. Chin-Sung Lin
194
Properties of Quadrilaterals - 2
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Properties of Quadrilaterals - 2 Properties Cong. Diagonals Bisecting Diagonals Perpendicular Diagonals Cong. Opposite Angles Supp. Opposite Angles Mr. Chin-Sung Lin
195
Properties of Quadrilaterals - 2
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Properties of Quadrilaterals - 2 Properties Cong. Diagonals Bisecting Diagonals Perpendicular Diagonals Cong. Opposite Angles Supp. Opposite Angles Mr. Chin-Sung Lin
196
Properties of Quadrilaterals - 3
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Properties of Quadrilaterals - 3 Properties Cong. Adj. Angles (1 P) Cong. Adj. Angles (2 P) Cong. Four Right Angles Diagonals Bisect Angles Non-Parallel Oppo. Sides Mr. Chin-Sung Lin
197
Properties of Quadrilaterals - 3
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Properties of Quadrilaterals - 3 Properties Cong. Adj. Angles (1 P) Cong. Adj. Angles (2 P) Cong. Four Right Angles Diagonals Bisect Angles Non-Parallel Oppo. Sides Mr. Chin-Sung Lin
198
Properties of Quadrilaterals - 3
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Properties of Quadrilaterals - 3 Properties Cong. Adj. Angles (1 P) Cong. Adj. Angles (2 P) Cong. Four Right Angles Diagonals Bisect Angles Non-Parallel Oppo. Sides Mr. Chin-Sung Lin
199
Properties of Quadrilaterals - 3
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Properties of Quadrilaterals - 3 Properties Cong. Adj. Angles (1 P) Cong. Adj. Angles (2 P) Cong. Four Right Angles Diagonals Bisect Angles Non-Parallel Oppo. Sides Mr. Chin-Sung Lin
200
Properties of Quadrilaterals - 3
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Properties of Quadrilaterals - 3 Properties Cong. Adj. Angles (1 P) Cong. Adj. Angles (2 P) Cong. Four Right Angles Diagonals Bisect Angles Non-Parallel Oppo. Sides Mr. Chin-Sung Lin
201
Properties of Quadrilaterals - 3
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Properties of Quadrilaterals - 3 Properties Cong. Adj. Angles (1 P) Cong. Adj. Angles (2 P) Cong. Four Right Angles Diagonals Bisect Angles Non-Parallel Oppo. Sides Mr. Chin-Sung Lin
202
Quadrilaterals and Proofs
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Quadrilaterals and Proofs Mr. Chin-Sung Lin
203
Quadrilaterals and Proofs
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Quadrilaterals and Proofs Given: Isosceles trapezoid ABCD AB || CD and AD BC Prove: 1 2 A B C D 1 2 Mr. Chin-Sung Lin
204
Quadrilaterals and Proofs
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Quadrilaterals and Proofs Given: Parallelogram ABCD and ABDE Prove: EAD DBC A B D C E Mr. Chin-Sung Lin
205
Quadrilaterals and Proofs
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Quadrilaterals and Proofs Given: ABC is a right , O is the midpoint of AC Prove: 1 2 A C B O 1 2 Mr. Chin-Sung Lin
206
Quadrilaterals and Proofs
L20_Geometric Proofs Involving Quadrilaterals ERHS Math Geometry Quadrilaterals and Proofs Given: ABCD is a rhombus, DBFE is an isosceles trapezoid Prove: CE CF E A B C D F Mr. Chin-Sung Lin
207
Coordinate Geometry and Quadrilaterals
L19_Coordinate Geometry and Quadrilaterals ERHS Math Geometry Coordinate Geometry and Quadrilaterals Mr. Chin-Sung Lin
208
L19_Coordinate Geometry and Quadrilaterals
ERHS Math Geometry Proving Rectangles To show that a quadrilateral is a rectangle, by showing that the quadrilateral is a parallelogram that contains a right angle, or with congruent diagonals Mr. Chin-Sung Lin
209
L19_Coordinate Geometry and Quadrilaterals
ERHS Math Geometry Proving Rectangles Given: The coordinates of the vertices of a quadrilateral Prove: A given quadrilateral is a rectangle Can be done by ……. (in terms of coordinate geometry) Mr. Chin-Sung Lin
210
L19_Coordinate Geometry and Quadrilaterals
ERHS Math Geometry Proving Rectangles Given: The coordinates of the vertices of a quadrilateral Prove: A given quadrilateral is a rectangle Can be done by proving a parallelogram and the product of the slopes of adjacent sides is equal to -1 the diagonals have the same lengths Mr. Chin-Sung Lin
211
Proving Rectangle - Parallelogram with a Right Angle
L19_Coordinate Geometry and Quadrilaterals ERHS Math Geometry Proving Rectangle - Parallelogram with a Right Angle ABCD is a quadrilateral, where A (1, 1), B(7, 5), C(9, 2) and D(3, -2) prove ABCD is a rectangle by proving that ABCD is a parallelogram with a right angle Mr. Chin-Sung Lin
212
Proving Rectangle - Parallelogram with Congruent Diagonals
L19_Coordinate Geometry and Quadrilaterals ERHS Math Geometry Proving Rectangle - Parallelogram with Congruent Diagonals ABCD is a quadrilateral, where A (1, 1), B(7, 5), C(9, 2) and D(3, -2) prove ABCD is a rectangle by proving that ABCD is a parallelogram with congruent diagonals Mr. Chin-Sung Lin
213
L19_Coordinate Geometry and Quadrilaterals
ERHS Math Geometry Proving Rhombuses To show that a quadrilateral is a rhombus, by showing that the quadrilateral has four congruent sides, or is a parallelogram: a pair of adjacent sides are congruent the diagonals intersect at right angles, or the opposite angles are bisected by the diagonals Mr. Chin-Sung Lin
214
L19_Coordinate Geometry and Quadrilaterals
ERHS Math Geometry Proving Rhombuses Given: The coordinates of the vertices of a quadrilateral Prove: A given quadrilateral is a rhombus Can be done by ……. (in terms of coordinate geometry) Mr. Chin-Sung Lin
215
L19_Coordinate Geometry and Quadrilaterals
ERHS Math Geometry Proving Rhombuses Given: The coordinates of the vertices of a quadrilateral Prove: A given quadrilateral is a rhombus Can be done by proving All four sides have the same lengths A parallelogram and the adjacent sides have the same lengths A parallelogram with the product of the slopes of the diagonals is equal to -1 Mr. Chin-Sung Lin
216
Proving Rhombus - Quadrilateral with Four Congruent Sides
L19_Coordinate Geometry and Quadrilaterals ERHS Math Geometry Proving Rhombus - Quadrilateral with Four Congruent Sides ABCD is a quadrilateral, where A (3, 7), B(5, 3), C(3, -1) and D(1, 3) prove ABCD is a rhombus by proving that ABCD is a quadrilateral with four congruent sides Mr. Chin-Sung Lin
217
Proving Rhombus - Parallelogram with Congruent Adjacent Sides
L19_Coordinate Geometry and Quadrilaterals ERHS Math Geometry Proving Rhombus - Parallelogram with Congruent Adjacent Sides ABCD is a quadrilateral, where A (3, 7), B(5, 3), C(3, -1) and D(1, 3) prove ABCD is a rhombus by proving that ABCD is a parallelogram with a pair of congruent adjacent sides Mr. Chin-Sung Lin
218
Proving Rhombus - Parallelogram with Perpendicular Diagonals
L19_Coordinate Geometry and Quadrilaterals ERHS Math Geometry Proving Rhombus - Parallelogram with Perpendicular Diagonals ABCD is a quadrilateral, where A (3, 7), B(5, 3), C(3, -1) and D(1, 3) prove ABCD is a rhombus by proving that ABCD is a parallelogram with perpendicular diagonals Mr. Chin-Sung Lin
219
L19_Coordinate Geometry and Quadrilaterals
ERHS Math Geometry Proving Squares To show that a quadrilateral is a square, by showing that the quadrilateral is a a rhombus that contains a right angle, or a rectangle with a pair of congruent adjacent sides Mr. Chin-Sung Lin
220
L19_Coordinate Geometry and Quadrilaterals
ERHS Math Geometry Proving Squares Given: The coordinates of the vertices of a quadrilateral Prove: A given quadrilateral is a square Can be done by ……. (in terms of coordinate geometry) Mr. Chin-Sung Lin
221
L19_Coordinate Geometry and Quadrilaterals
ERHS Math Geometry Proving Squares Given: The coordinates of the vertices of a quadrilateral Prove: A given quadrilateral is a square Can be done by proving A rhombus and the product of the slopes of adjacent sides is equal to -1 A rectangle and two adjacent sides have the same lengths Mr. Chin-Sung Lin
222
Proving Squares - Rhombus with a Right Angle
L19_Coordinate Geometry and Quadrilaterals ERHS Math Geometry Proving Squares - Rhombus with a Right Angle ABCD is a quadrilateral, where A (0, 4), B(3, 5), C(4, 2) and D(1, 1) prove ABCD is a square by proving that ABCD is a rhombus with a right angle Mr. Chin-Sung Lin
223
Proving Squares - Rectangle with Congruent Adjacent Sides
L19_Coordinate Geometry and Quadrilaterals ERHS Math Geometry Proving Squares - Rectangle with Congruent Adjacent Sides ABCD is a quadrilateral, where A (0, 4), B(3, 5), C(4, 2) and D(1, 1) prove ABCD is a square by proving that ABCD is a rectangle with congruent adjacent sides Mr. Chin-Sung Lin
224
L19_Coordinate Geometry and Quadrilaterals
ERHS Math Geometry Proving Trapezoids To prove that a quadrilateral is a trapezoid, show that two sides are parallel and the other two sides are not parallel Mr. Chin-Sung Lin
225
L19_Coordinate Geometry and Quadrilaterals
ERHS Math Geometry Proving Trapezoids Given: The coordinates of the vertices of a quadrilateral Prove: A given quadrilateral is a trapezoid Can be done by ……. (in terms of coordinate geometry) Mr. Chin-Sung Lin
226
L19_Coordinate Geometry and Quadrilaterals
ERHS Math Geometry Proving Trapezoids Given: The coordinates of the vertices of a quadrilateral Prove: A given quadrilateral is a trapezoid Can be done by proving the slopes of one pair of opposite sides are equal while the slopes of the other pair of opposite sides are not equal Mr. Chin-Sung Lin
227
Proving Trapezoids - Parallel Bases and Non-Parallel Legs
L19_Coordinate Geometry and Quadrilaterals ERHS Math Geometry Proving Trapezoids - Parallel Bases and Non-Parallel Legs ABCD is a quadrilateral, where A (-3, 5), B(4, 5), C(6, 1) and D(-5, 1) prove ABCD is a trapezoid by proving that there are two parallel bases and two non-parallel legs Mr. Chin-Sung Lin
228
Proving Isosceles Trapezoids
L19_Coordinate Geometry and Quadrilaterals ERHS Math Geometry Proving Isosceles Trapezoids To prove that a trapezoid is an isosceles trapezoid, show that one of the following statements is true: The legs are congruent The lower/upper base angles are congruent The diagonals are congruent Mr. Chin-Sung Lin
229
Proving Isosceles Trapezoids
L19_Coordinate Geometry and Quadrilaterals ERHS Math Geometry Proving Isosceles Trapezoids Given: The coordinates of the vertices of a quadrilateral Prove: A given quadrilateral is an isosceles trapezoid Can be done by ……. (in terms of coordinate geometry) Mr. Chin-Sung Lin
230
Proving Isosceles Trapezoids
L19_Coordinate Geometry and Quadrilaterals ERHS Math Geometry Proving Isosceles Trapezoids Given: The coordinates of the vertices of a quadrilateral Prove: A given quadrilateral is an isosceles trapezoid Can be done by proving A trapezoid whose two legs have the same lengths A trapezoid whose two diagonals have the same lengths Mr. Chin-Sung Lin
231
Proving Isosceles Trapezoids - Trapezoid with Congruent Legs
L19_Coordinate Geometry and Quadrilaterals ERHS Math Geometry Proving Isosceles Trapezoids - Trapezoid with Congruent Legs ABCD is a quadrilateral, where A (-3, 5), B(4, 5), C(6, 1) and D(-5, 1) prove ABCD is an isosceles trapezoid by proving that ABCD is a trapezoid with congruent legs Mr. Chin-Sung Lin
232
Proving Isosceles Trapezoids - Trapezoid w. Congruent Diagonals
L19_Coordinate Geometry and Quadrilaterals ERHS Math Geometry Proving Isosceles Trapezoids - Trapezoid w. Congruent Diagonals ABCD is a quadrilateral, where A (-3, 5), B(4, 5), C(6, 1) and D(-5, 1) prove ABCD is an isosceles trapezoid by proving that ABCD is a trapezoid with congruent diagonals Mr. Chin-Sung Lin
233
L19_Coordinate Geometry and Quadrilaterals
ERHS Math Geometry Application Example Mr. Chin-Sung Lin
234
Finding the Type of Quadrilateral
L19_Coordinate Geometry and Quadrilaterals ERHS Math Geometry Finding the Type of Quadrilateral Given ABCD is a quadrilateral, where A (3, 6), B(7, 0), C(1, -4), D(-3, 2) Find the type of quadrilateral ABCD Mr. Chin-Sung Lin
235
L19_Coordinate Geometry and Quadrilaterals
ERHS Math Geometry Areas of Polygons Mr. Chin-Sung Lin
236
L19_Coordinate Geometry and Quadrilaterals
ERHS Math Geometry Areas of Polygons The area of a polygon is the unique real number assigned to any polygon that indicates the number of non-overlapping square units contained in the polygon’s interior Mr. Chin-Sung Lin
237
Areas of Quadrilaterals
L19_Coordinate Geometry and Quadrilaterals ERHS Math Geometry Areas of Quadrilaterals The area of a quadrilateral is the product of the length of the base and the length of the altitude (height) A B C D base altitude Mr. Chin-Sung Lin
238
Areas of Parallelograms
L19_Coordinate Geometry and Quadrilaterals ERHS Math Geometry Areas of Parallelograms The area of a parallelogram is the product of the length of the base and the length of the altitude (height) A B C D altitude base Mr. Chin-Sung Lin
239
L20_Geometric Proofs Involving Quadrilaterals
ERHS Math Geometry Q & A Mr. Chin-Sung Lin
240
L20_Geometric Proofs Involving Quadrilaterals
ERHS Math Geometry The End Mr. Chin-Sung Lin
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.