Download presentation
Presentation is loading. Please wait.
Published byWilfrid Logan Modified over 9 years ago
1
Proving Triangles Congruent
2
Two geometric figures with exactly the same size and shape. The Idea of a Congruence A C B DE F
3
How much do you need to know... need to know...... about two triangles to prove that they are congruent?
4
If all six pairs of corresponding parts (sides and angles) are congruent, then the triangles are congruent. Corresponding Parts ABC DEF B A C E D F 1.AB DE 2.BC EF 3.AC DF 4. A D 5. B E 6. C F
5
Do you need all six ? NO ! SSS SAS ASA RHS S means side & A means angle
6
1) Side-Side-Side (SSS) 1. AB DE 2. BC EF 3. AC DF ABC DEF B A C E D F
7
2) Side-Angle-Side (SAS) 1. AB DE 2. A D 3. AC DF ABC DEF B A C E D F included angle
8
The angle between two sides Included Angle G G I I H H
9
Name the included angle: YE and ES ES and YS YS and YE Included Angle SY E E E S S Y Y
10
3) Angle-Side- Angle (ASA) 1. A D 2. AB DE 3. B E ABC DEF B A C E D F included side
11
The side between two angles Included Side GI HI GH
12
Name the included side : Y and E E and S S and Y Included Side SY E YE ES SY
13
Angle-Angle-Side (AAS) 1. A D 2. B E 3. AC EF NOT B A C E D F Non-included side
14
Angle-Angle-Side (AAS) Sometimes will be ( ASA ) 1. A D 2. B E 3. BC EF ABC DEF B A C E D F C F ( why ?) * *
15
4) Right angle- hypotenuse - side (RHS) 4) Right angle - hypotenuse - side (RHS) 1. A = D = 90 2. AB DE 3. BC EF ABC DEF B A C E D F ∘
16
Warning: No SSA Postulate A C B D E F NOT CONGRUENT There is no such thing as an SSA postulate!
17
Warning: No AAA Postulate A C B D E F There is no such thing as an AAA postulate! NOT CONGRUENT
18
The Congruence Postulates SSS correspondence ASA correspondence SAS correspondence RHS correspondence SSA correspondence AAA correspondence
19
Example In the given figure prove that : AB ≅ AD B C D A In ∆∆ ADC, ABC we have : فيهما : ADC, ABC ∆∆ 1) DC = BC ( given ) 1) ( معطى ) DC = BC 2) ∡ DCA = ∡ BCA ( given ) 2) ( معطى ) ∡ DCA = ∡ BCA 3) AC = AC ( common side ) 3) ( ضلع مشترك )AC = AC ∴ ∆ ACD ≅ ∆ ACB ( SAS postulate) ∴ ∆ ACD ≅ ∆ ACB ( SAS مسلمة ) ∴ AB ≅ AD ( CPCTC ) Corresponding parts of ≅ ∆ s are ≅ ∴ AB ≅ AD ( ( الأجزاء المتناظرة في المثلثات المتطابقة تكون متطابقة
20
Name That Postulate SAS ASA SSS SSA (when possible)
21
Name That Postulate (when possible) ASA SAS AAA SSA
22
Name That Postulate (when possible) SAS SAS SAS Reflexive Property Vertical Angles Reflexive Property SSA
23
ACTIVITY : Name That Postulate (when possible)
24
ACTIVITY : Name That Postulate
25
Let’s Practice Indicate the additional information needed to enable us to apply the specified congruence postulate. For ASA: For SAS: B D For AAS ASA : A F A F AC FE
26
ACTIVITY Indicate the additional information needed to enable us to apply the specified congruence postulate. For ASA: For SAS: For AAS ASA :
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.