Download presentation
Presentation is loading. Please wait.
Published byVirgil Williams Modified over 9 years ago
1
CME12, 2012.07.02. – Rzeszów, Poland Gergely Wintsche Generalization through problem solving Gergely Wintsche Mathematics Teaching and Didactic Center Faculty of Science Eötvös Loránd University, Budapest
2
Gergely Wintsche Outline 1. Dissections, examples 2. The Wallace-Bolyai-Gerwein theorem 3. Cutting a quadrilateral The basic lemma Triangle Trapezoid Quadrilateral Part II / 2 – Cut a quadrilateral into 2 halves
3
Gergely Wintsche The tangram Part II / 3 – Cut a quadrilateral into 2 halves
4
Gergely Wintsche The pentominos Part II / 4 – Cut a quadrilateral into 2 halves
5
Gergely WintschePart II / 5 – Cut a quadrilateral into 2 halves Introduction The Wallace-Bolyai-Gerwien theorem
6
Gergely WintschePart II / 6 – Cut a quadrilateral into 2 halves Introduction The Wallace-Bolyai-Gerwien theorem
7
Gergely WintschePart II / 7 – Cut a quadrilateral into 2 halves Introduction The Wallace-Bolyai-Gerwien theorem
8
Gergely WintschePart II / 8 – Cut a quadrilateral into 2 halves Introduction The Wallace-Bolyai-Gerwien theorem
9
Gergely WintschePart II / 9 – Cut a quadrilateral into 2 halves Introduction The Wallace-Bolyai-Gerwien theorem
10
Gergely WintschePart II / 10 – Cut a quadrilateral into 2 halves Introduction The basic problem
11
Gergely WintschePart II / 11 – Cut a quadrilateral into 2 halves Introduction The triangle
12
Gergely WintschePart II / 12 – Cut a quadrilateral into 2 halves Introduction The quadrilateral
13
Gergely WintschePart II / 13 – Cut a quadrilateral into 2 halves Introduction The trapezoid
14
Gergely WintschePart II / 14 – Cut a quadrilateral into 2 halves Introduction Quadrilateral
15
Gergely WintschePart II/ 15 – Cut a quadrilateral into 2 halves Introduction Solution (1)
16
Gergely WintschePart I / 16 – Cut a quadrilateral into 2 halves Introduction Solution (2)
17
Gergely WintschePart II / 17 – Cut a quadrilateral into 2 halves Introduction The quadrilateral
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.