Presentation is loading. Please wait.

Presentation is loading. Please wait.

Correctness of Constructing Optimal Alphabetic Trees Revisited Marek Karpinski, Lawrence L. Larmore, Wojciech Rytter Theoretical computer science 180 (1997)

Similar presentations


Presentation on theme: "Correctness of Constructing Optimal Alphabetic Trees Revisited Marek Karpinski, Lawrence L. Larmore, Wojciech Rytter Theoretical computer science 180 (1997)"— Presentation transcript:

1 Correctness of Constructing Optimal Alphabetic Trees Revisited Marek Karpinski, Lawrence L. Larmore, Wojciech Rytter Theoretical computer science 180 (1997) 309-324

2 18/12/2000 2 Outline Definitions General version of Garsia-Wachs (GW) algorithm Proof of GW Hu-Tacker (HT) algorithm Proof of HT by similarity to GW

3 18/12/2000 3 Definitions Binary tree: Every internal node has exactly two sons

4 18/12/2000 4 Definitions

5 18/12/2000 5 The Move Operator

6 18/12/2000 6 The Move Operator

7 18/12/2000 7 The Move Operator

8 18/12/2000 8 The Move Operator

9 18/12/2000 9 Definitions

10 18/12/2000 10 Theorem 1 (correctness of GW)

11 18/12/2000 11 Garsia-Wachs Algorithm

12 18/12/2000 12 Definitions

13 18/12/2000 13 Theorem 2

14 18/12/2000 14 Shift Operations

15 18/12/2000 15 Shift Operations

16 18/12/2000 16 LeftShift Example

17 18/12/2000 17 LeftShift Example

18 18/12/2000 18 LeftShift Example

19 18/12/2000 19 LeftShift Example

20 18/12/2000 20 LeftShift Example

21 18/12/2000 21 LeftShift Example

22 18/12/2000 22 LeftShift Example

23 18/12/2000 23 LeftShift Example

24 18/12/2000 24 LeftShift Example

25 18/12/2000 25 Theorem 2

26 18/12/2000 26 Proof of Point 2 in Theorem 2

27 18/12/2000 27 Proof of Point 2 in Theorem 2

28 18/12/2000 28 Proof of Point 3 Theorem 2

29 18/12/2000 29 Definition of Well Shaped Segments

30 18/12/2000 30 Definition of Well Shaped Segments Active Window

31 18/12/2000 31 Movability Lemma If the segment [i,…,j] is left well shaped, then the active pair (i,i+1) can be moved to the other side of the segment by locally rearranging sub-trees in the active window without changing the relative order of the other items and without changing the level function of the tree.

32 18/12/2000 32 Movability Lemma

33 18/12/2000 33 Movability Lemma

34 18/12/2000 34 Movability Lemma

35 18/12/2000 35 Movability Lemma

36 18/12/2000 36 Movability Lemma

37 18/12/2000 37 Theorem 3

38 18/12/2000 38 Point 1 in Theorem 2

39 18/12/2000 39 Hu-Tucker Algorithm Transparent items and opaque items Compatible pair – No opaque items in the middle Minimal compatible pair (mcp) – compatible pair (i,i+1) where Weight(i) + weight(i+1) is minimal Tie Breaking Rule

40 18/12/2000 40 Hu-Tucker Algorithm

41 18/12/2000 41 Hu-Tucker Algorithm

42 18/12/2000 42 Hu-Tucker Algorithm

43 18/12/2000 43 Hu-Tucker Algorithm

44 18/12/2000 44 GW` Algorithm gmp – Globaly Minimal Pair GW` - the same as GW but always choose gmp instead of some other lmp.

45 18/12/2000 45 Definitions Special sequence – sequence of weights, each one is either transparent or opaque Normal sequence – sequence of weights MoveTransparent operator – converts a special sequence into a normal sequence and moves all transparent items to their RightPos. (first it moves the rightmost item, then the one to its left, etc…)

46 18/12/2000 46 MoveTransparent

47 18/12/2000 47 MoveTransparent

48 18/12/2000 48 MoveTransparent

49 18/12/2000 49 MoveTransparent

50 18/12/2000 50 MoveTransparent

51 18/12/2000 51 MoveTransparent

52 18/12/2000 52 MoveTransparent

53 18/12/2000 53 MoveTransparent

54 18/12/2000 54 MoveTransparent

55 18/12/2000 55 MoveTransparent

56 18/12/2000 56 MoveTransparent

57 18/12/2000 57 MoveTransparent

58 18/12/2000 58 MoveTransparent

59 18/12/2000 59 MoveTransparent

60 18/12/2000 60 MoveTransparent

61 18/12/2000 61 MoveTransparent

62 18/12/2000 62 The Simulation Lemma Assuming there are no ties

63 18/12/2000 63 Proof of the Simulation Lemma Claim A Claim B

64 18/12/2000 64 Proof of Claim A By contradiction assume that w,u are not visible to each other. This means there is an opaque item q between them. Two cases:

65 18/12/2000 65 Proof of Claim A Contradiction – no place for q

66 18/12/2000 66 Proof of Claim A

67 18/12/2000 67 Proof of Claim A Contradiction – no place for q

68 18/12/2000 68 Proof of Claim B Claim B Proof

69 18/12/2000 69 Proof of Claim B The order of movements is from right to left, thus w is Processed first then the items between u and w, and then u. At this point u and w must be adjacent, thus q must be processed later, and thus it is to the left of u. q is not visible from u because (u,w) is mcp

70 18/12/2000 70 Proof of Claim B Let q` be the opaque item between q and u visible from u Contradiction

71 18/12/2000 71 Conclusion

72 18/12/2000 72 Claim C

73 18/12/2000 73 Proof of claim C

74 18/12/2000 74 Proof of Simulation Lemma The proof of the lemma is by induction

75 18/12/2000 75 Tie Braking Rule Theorem 4 The Tie Breaking Rule (TBR) is correct Proof

76 18/12/2000 76 Proof of TBR Case 1: All weights are strictly positive

77 18/12/2000 77 Proof of TBR Case 2: Some of the original weights are zero


Download ppt "Correctness of Constructing Optimal Alphabetic Trees Revisited Marek Karpinski, Lawrence L. Larmore, Wojciech Rytter Theoretical computer science 180 (1997)"

Similar presentations


Ads by Google