Presentation is loading. Please wait.

Presentation is loading. Please wait.

Der Paul van der Werf Leiden Observatory Radiative and mechanical feedback in the molecular gas in (U)LIRGs London September 16, 2011.

Similar presentations


Presentation on theme: "Der Paul van der Werf Leiden Observatory Radiative and mechanical feedback in the molecular gas in (U)LIRGs London September 16, 2011."— Presentation transcript:

1 der Paul van der Werf Leiden Observatory Radiative and mechanical feedback in the molecular gas in (U)LIRGs London September 16, 2011

2 Credits Kate Isaak (ESTEC) Padelis Papadopoulos (MPI für Radioastronomie) Marco Spaans (Kapteyn Astronomical Institute) Eduardo González-Alfonso (Henares) Rowin Meijerink (Leiden Observatory) Edo Loenen (Leiden Observatory) – talk after tea Alicia Berciano Alba (Leiden Observatory/ASTRON) – next talk Axel Weiß (MPI für Radioastronomie) + the HerCULES team 2 Feedback in (U)LIRGs

3 Outline   Introducing HerCULES   H 2 O emission in (U)LIRGs   Radiation pressure dominated disks in (U)LIRGs 3 Feedback in (U)LIRGs

4 Introducing HerCULES 4 Herschel Comprehensive (U)LIRG EmissionSurvey Open Time Key Program on the Herschel satellite Feedback in (U)LIRGs

5 HerCULES in a nutshell   HerCULES measures uniformly and statistically the neutral gas cooling lines in a flux-limited sample of 29 (U)LIRGs.   Sample:   all IRAS RBGS ULIRGs with S 60 > 12.19 Jy (6 sources)   all IRAS RBGS LIRGs with S 60 > 16.8 Jy (23 sources)   Observations:   SPIRE/FTS full high-resolution scans: 200 to 670  m at R ≈ 600, covering CO 4 — 3 to 13 — 12 and [CI] + any other bright lines   PACS line scans of [CII] and both [OI] lines   All targets observed to same (expected) S/N   Extended sources observed at several positions 5 Feedback in (U)LIRGs

6 Who is HerCULES? Paul van der Werf (Leiden; PI) Susanne Aalto (Onsala) Lee Armus (Spitzer SC) Vassilis Charmandaris (Crete) Kalliopi Dasyra (CEA) Aaron Evans (Charlottesville) Jackie Fischer (NRL) Yu Gao (Purple Mountain) Eduardo González-Alfonso (Henares) Thomas Greve (Copenhagen) Rolf G ü sten (MPIfR) Andy Harris (U Maryland) Chris Henkel (MPIfR) Kate Isaak (ESA) Frank Israel (Leiden) Carsten Kramer (IRAM) Edo Loenen (Leiden) Steve Lord (NASA Herschel SC) Jesus Martín-Pintado (Madrid) Joe Mazzarella (IPAC) Rowin Meijerink (Leiden) David Naylor (Lethbridge) Padelis Papadopoulos (Bonn) Dave Sanders (U Hawaii) Giorgio Savini (Cardiff/UCL) Howard Smith (CfA) Marco Spaans (Groningen) Luigi Spinoglio (Rome) Gordon Stacey (Cornell) Sylvain Veilleux (U Maryland) Cat Vlahakis (Leiden/Santiago) Fabian Walter (MPIA) Axel Wei ß (MPIfR) Martina Wiedner (Paris) Manolis Xilouris (Athens) 6 Feedback in (U)LIRGs

7 HerCULES sample Target log(L IR /L  ) Mrk 231 12.51 IRAS F17207—0014 12.39 IRAS 13120—5453 12.26 Arp 220 12.21 Mrk 273 12.14 IRAS F05189—2524 12.11 Arp 299 11.88 NGC 6240 11.85 IRAS F18293—3413 11.81 Arp 193 11.67 IC 1623 11.65 NGC 1614 11.60 NGC 7469 11.59 NGC 3256 11.56 Target log(L IR /L  ) IC 4687/4686 11.55 NGC 2623 11.54 NGC 34 11.44 MCG+12—02—001 11.44 Mrk 331 11.41 IRAS 13242—5713 11.34 NGC 7771 11.34 Zw 049.057 11.27 NGC 1068 11.27 NGC 5135 11.17 IRAS F11506—3851 11.10 NGC 4418 11.08 NGC 2146 11.07 NGC 7552 11.03 NGC 1365 11.00 7 Feedback in (U)LIRGs

8 Outline   Introducing HerCULES   H 2 O emission in (U)LIRGs   Radiation pressure dominated disks in (U)LIRGs 8 Feedback in (U)LIRGs

9 Water in molecular clouds  H 2 O ice abundant in molecular clouds  Can be released into the gas phase by UV photons, X-rays, cosmic rays, shocks,...  Can be formed directly in the gas phase in warm molecular gas  Abundant, many strong transitions  expected to be major coolant of warm, dense molecular gas 9 Feedback in (U)LIRGs Herschel image of (part of) the Rosetta Molecular Cloud

10 Feedback in (U)LIRGs 10 Low-z H 2 O: M82 vs. Mrk231  At D = 3.9 Mpc, one of the closest starburst galaxies  With L IR = 3  10 10 L , a very moderate starburst  At z=0.042, one of the closest QSOs (D L =192 Mpc)  With L IR = 4  10 12 L , the most luminous ULIRG in the IRAS Revised bright Galaxy Sample M82Mrk231

11 H 2 O lines in M82  Faint lines, complex profiles  Only lines of low excitation 11 Feedback in (U)LIRGs (Weiß et al., 2010)(Panuzzo et al., 2010)

12 Mrk231: strong H 2 O lines, high excitation 12 Feedback in (U)LIRGs (Van der Werf et al., González- Alfonso et al., 2010)

13 Mrk231: details 13Feedback in (U)LIRGs New detections:  H 2 O ground state  H 2 18 O (2 lines)  H 3 O + (3 lines)  NH 3  NH 2 ?  several unassigned lines

14 H 2 O lines in Mrk231  Low lines: pumping by cool component + some collisional excitation  High lines: pumping by warm component  Radiative pumping dominates and reveals an infrared-opaque (  100  m ~ 1) disk. (González-Alfonso et al., 2010) 14 Feedback in (U)LIRGs

15 Lessons from H 2 O (1 + 2) 15Feedback in (U)LIRGs 1) In spite of high luminosities, H 2 O lines are unimportant for cooling the warm molecular gas. 2) Radiatively H 2 O lines reveal extended infrared-opaque circumnuclear gas disks.

16 Lessons from H 2 O (3) Radiation pressure from the strong IR radiation field: 16Feedback in (U)LIRGs Since both  100 and T d are high, radiation pressure dominates the gas dynamics in the circumnuclear disk. 3) Conditions in the circumnuclear molecular disk are Eddington-limited.

17 Eddington-limited consequences   Eddington-limited conditions predict the L FIR -L HCN relation within factor 2 for standard dust/gas ratio (Andrews & Thompson 2011)   If accreting towards nuclear SMBH, can account for M * /M  relation (Thompson et al., 2005)   Radiation pressure can expel nuclear fuel and produce Faber- Jackson relation (Murray et al., 2005) 17 Feedback in (U)LIRGs (Andrews & Thompson, 2011)

18 Mechanical feedback   Radiation pressure can drive the observed molecular outflows (e.g., Murray et al., 2005)   See Susanne Aalto’s talk: flow prominent in HCN  dense gas   Highest outflow velocities observed in H 2 O   Key process in linking ULIRGs and QSOs? 18 Feedback in (U)LIRGs (Feruglio et al., 2010) (Fischer et al., 2010)

19 H 2 O in HerCULES Target log(L IR /L  ) Mrk 231 12.51 IRAS F17207—0014 12.39 IRAS 13120—5453 12.26 Arp 220 12.21 Mrk 273 12.14 IRAS F05189—2524 12.11 Arp 299 11.88 NGC 6240 11.85 IRAS F18293—3413 11.81 Arp 193 11.67 IC 1623 11.65 NGC 1614 11.60 NGC 7469 11.59 NGC 3256 11.56 Target log(L IR /L  ) IC 4687/4686 11.55 NGC 2623 11.54 NGC 34 11.44 MCG+12—02—001 11.44 Mrk 331 11.41 IRAS 13242—5713 11.34 NGC 7771 11.34 Zw 049.057 11.27 NGC 5135 11.17 IRAS F11506—3851 11.10 NGC 4418 11.08 NGC 2146 11.07 NGC 7552 11.03 NGC 1365 11.00 19 Feedback in (U)LIRGs red = wet

20 Sample spectrum: Zw049  057 20Feedback in (U)LIRGs

21 Zw049  057 details 21Feedback in (U)LIRGs

22 H 2 O is not XDR-driven 22Feedback in (U)LIRGs  Only 3 bona fide AGNs in H 2 O sample (Mrk231, IRAS F05189  2524, and Arp299A)  Some pure starbursts in H 2 O sample (e.g., IRAS 17208  0014)  AGNs without strong H 2 O emission (e.g., NGC1365, NGC7469)  NGC7469 shows no strong H 2 O lines but strong OH + emission  XDR?  All of this must be compared to CO ladder PDR/XDR analysis

23 Luminosity dependence   Radiatively excited H 2 O emission ubiquitous in ULIRGs, but also seen in some LIRGs (young starbursts?)   Detection of weak H 2 O lines in many LIRGs and in M82 shows plenty of gas-phase H 2 O  key feature is the prominence of infrared-opaque clouds 23 Feedback in (U)LIRGs

24 Outline   Introducing HerCULES   H 2 O emission in (U)LIRGs   Radiation pressure dominated disks in (U)LIRGs 24 Feedback in (U)LIRGs

25 The X-factor   Converting CO flux (luminosity) into H 2 column density (mass): (MW:  =4; ULIRGs:  =0.8) Warning: discussions of the X- factor have been the death-blow for many conferences. 25 Feedback in (U)LIRGs (Papadopoulos, Van der Werf, Isaak & Xilouris, in prep. ) (U)LIRG sample

26 The X-factor and optical depth Highly turbulent motions  low optical depths (  high 12 CO/ 13 CO line ratios)  low X-factor (e.g., ULIRGs: X=0.8,Downes & Solomon 1997) 26 Feedback in (U)LIRGs NB: T line is T b of the line, not kinetic temperature

27 Calculating X-factors   Sample of 70 (U)LIRGs, 12 CO 1  0, 2  1, 3  2, (4  3, 6  5) and 13 CO 1  0, (2  1) lines   2 component model: high excitation and low excitation component   X-factor explicitly calculated using non-LTE excitation model and finite optical depths 27 Feedback in (U)LIRGs

28 Distribution of X-factors Assumptions:   Orion-like high excitation component (not needed with denser coverage of CO ladder  Herschel)   Radiation pressure supported disk  L FIR /M(star forming gas) = constant (observed: L FIR /L HCN = constant; e.g., Gao & Solomon, Wu et al.) Results:   X-factors cluster between 0.5 and 1 (cf., Downes/Solomon value of 0.8 for ULIRGs) with tail up to and exceeding Milky Way values   Most (but not all!) ULIRGs have low X-factors 28 Feedback in (U)LIRGs (Papadopoulos, Van der Werf, Isaak & Xilouris, in prep. ) (U)LIRG sample

29 Getting at X   Derive X from 12 CO 1  0  6  5 + 13 CO 1  0 (or 2  1); ideally, use HCN lines as well   Can be used at high z too, but 13 CO is challenging   Why did Downes & Solomon get it right without 13 CO?   High quality data showing turbulent velocity field   Correctly produced low optical depth   Getting the optical depth right is key 29 Feedback in (U)LIRGs

30 Summary and outlook   Radiatively excited H 2 O lines select infrared-opaque nuclear regions such as found in local ULIRGs.   IR radiation pressure can be an important dynamical factor and may lead to Eddington- limited star formation.   X-factors in these regions can be derived from CO lines   Rich field for ALMA at low and high z 30 Feedback in (U)LIRGs


Download ppt "Der Paul van der Werf Leiden Observatory Radiative and mechanical feedback in the molecular gas in (U)LIRGs London September 16, 2011."

Similar presentations


Ads by Google