Presentation is loading. Please wait.

Presentation is loading. Please wait.

Dynamic Model for Stock Market Risk Evaluation Kasimir Kaliva and Lasse Koskinen Insurance Supervisory Authority Finland.

Similar presentations


Presentation on theme: "Dynamic Model for Stock Market Risk Evaluation Kasimir Kaliva and Lasse Koskinen Insurance Supervisory Authority Finland."— Presentation transcript:

1 Dynamic Model for Stock Market Risk Evaluation Kasimir Kaliva and Lasse Koskinen Insurance Supervisory Authority Finland

2 Goal: Stock Market Risk Modelling in Long Horizon Phenomenon: Stock market bubble Model should work from one quarter to several years –Prices should be mean reverting Fundament: Dividend / Price – ratio Explanatory factor: Inflation Usage: Risk Assessment and DFA

3 Background Theory: Gordon growth model for dividend Dynamics: Campbell et al, also near Wilkie –Dividend-price-ratio (P/D) time-varying, stationary =>Mean reversion in stock prices Inflation expectation: Modigliani and Cohn (79) Statistical model: –Logistic Mixture Autoregression with exogenous variable (Wong and Li (01)) –Conditional (dynamic) on P/D -ratio

4 Data U.S. quarterly stock market (SP500) and inflation series; Log returns and dividens –Prices and dividends Period: 1959 –1994 Structural breaks in dividend series and price/dividend –series in 1958 and 1995 1995- 2001 – share repurchases and growth strategies won popularity

5 Structural Break in Dividends in 1955

6 Final Model Structure Two state (S(t)) regime-switching model: If S(t) = 1: Δ p(t) = a 1 +  1 (t), (RW) If S(t) = 2: Δ p(t) = a 2 – by(t-1)+   (t), causes mean reversion -  1 (t) ∼ N(0,σ 1 ),  2 (t) ∼ N(0,σ 2 ), - y(t) = dividend/price -ratio State hidden: Prob{ S(t) = 1} =  ( f(inflation) );  is normal distribution, f is a function

7 Statistical Model for Dividend and Inflation Dividend: AR(2)-ARCH(4) –model - Dividend is the driving factor. Inflation: AR(4) –model where dividend is explanatory variable - Note! This is just statistical relation, not causal. See fig on cross-correlation!

8 Cross-Correlation Inflation vs Dividend Growth

9 Price Dynamics Log-Likelihood method results in the following significant relation: S(t) = 1: Δ p(t) = 0.027 +  1 (t) S(t) = 2: Δ p(t) = 1.078 – 0.357y(t-1)+   (t), -  1 (t) ∼ N(0,0.052),  2 (t) ∼ N(0,0.077) Return distribution conditional: State S(t) and y(t) = log(P(t) /D(t))

10 Model Testing The model is compared to 1) more general and 2) linear alternatives: - More general LMARX (that include standard RW and more complicated models) is rejected at 5 % level - Information criterion AIC and BIC select the nonlinear model instead of linear one

11 Model Diagnostic Quantile (QQ) –plot shows: - Normal distribution assumption for the residuals of the linear model is wrong (fig) Quantile residual plot shows: - Excellent fit for LMARX See fig. (Can see that it is not from normal distribution?)

12 QQ-plot for linear model (residuals)

13 QQ-plot for LMARX (quantile residuals)

14 Prob{S=2 } as a function of inflation - High inflation is tricker for state-switch

15 Intrerpretation Model operates much more often in state 1 than in state 2; that is RW is a good description most of the time E(Δ d) = 0.014 < 0.027 = E(RW | S =1). => process generates bubbles => switch from S=1 to S=2 causes a market crash, since b < 0 (b is the coefficient of log(P(t) /D(t)) in state 2) => process is mean reverting

16 UK – data (not in the paper) Overfitting is a danger especially when nonlinear model is used => We tested also the UK -data =>The model structure remains invariant (heteroscedastic residuals)

17 Risk Assessment The proposed model has shape-changing predictive distribution Shape depends on - prediction horizon - inflation - P/D –ratio => Risk is time-varying

18 1-year Predictive Distribution. Log(P/D): a) low 3.2 b) high 3.8

19 1-year Predictive Distribution. Log(P/D) is 3.8, Inflation 4 %

20 5-year Predictive Distribution. Log(P/D) is 3.8, Inflation 4 %

21 10-year Predictive Distribution. Log(P/D) is 3.8, Inflation 4 %

22 Present Situation Good: Stock market risk is much lower than in 2000 Bad: P/D –ratio still high in the U.S.


Download ppt "Dynamic Model for Stock Market Risk Evaluation Kasimir Kaliva and Lasse Koskinen Insurance Supervisory Authority Finland."

Similar presentations


Ads by Google