Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lecture 9 Yuri Kazakevich Seton Hall University

Similar presentations


Presentation on theme: "Lecture 9 Yuri Kazakevich Seton Hall University"— Presentation transcript:

1 Lecture 9 Yuri Kazakevich Seton Hall University
System and Method Troubleshooting Yuri Kazakevich Seton Hall University

2 Troubleshooting Locate the problem by ranking possible causes.
There is no standard troubleshooting procedure. General Pattern: Locate the problem by ranking possible causes. Verify the presence of the most probable cause. If present – fix the problem, otherwise verify the existence of the next possible cause. First try to distinguish System problem or Method problem

3 Method vs. System Troubleshooting
System Parameters Flow stability Backpressure Clogging Detector problems Injection siutability Injection volume Temperature Method Parameters Flow rate Eluent type Eluent composition pH pH modifier (type) Injection volume Temperature Gradient profile

4 System Parameters Solvent Degasser Pump Autosampler Column Detector
Simple preliminary verification of system setup can save time. Solvent Degasser Pump Autosampler Column Detector Bottle fill-in Inlet filter date Flush if solvent change >15 mL Backpressure Flow stability Check-valves Vial fill-in connections cross-contamination Column type connections Wavelength Cell volume multiple detectors connection sequence Sampling rate Critical connections. Minimize tubing length

5 Available HPLC system set margins for column selection.
System Suitability Available HPLC system set margins for column selection. 20 ml detector flow-cell incompatible with <3 mm I.D. columns 10 ml sample loop incompatible with <1 mm I.D. columns. 0.2 ml micro-injector is useless for conventional columns. Suitability Rule Injection volume < Cell volume Column Dead Volume » of the empty column volume

6 System Suitability (Injection Volume)
Column: 150 x 4.6 mm (C18), Vo = 1.7 ml Efficiency: 10,000 t.p. Eluent: MeCN/Water 70/30 VR(benzene)=2.2 ml; VR(benz-a-pyrene)=14.6 ml wbenzene=88 ml; w(b-a-p) = 584 ml 100 ml injection 8 ml injection

7 Effect of flow-cell volume and sampling rate
Response time effect Flow cell volume Cell volume

8 HPLC System set up Minimize the volume and connections between autosampler, column, and detector. No guard, no prefilter

9 Tubing & connections

10 Unions

11 Critical Connections Injector - Column, Column - Detector
No unions, in-line filters, guard columns Single piece tubing (0.007” and smaller I.D.)

12 Eluent Composition Effects on the Column Back Pressure

13 Guard Columns Guard column always decreases system efficiency
Purpose - trapping retentive impurities Disadvantage - introduces extra-connections in critical zone Sample has 1% impurity. How many injections will kill 1% of column surface with 1% sample solution and 10 ml injection volume? 1% column surface ~ 2-3 m2, it could adsorb ~ 0.1 mMole 300 injections will reach this level. Guard column always decreases system efficiency

14 Autosampler – Column/Pump Connections
Wrong connection Correct connection

15 Waters system (Injection, Drawing Sample)
Lecture 9 Waters system (Injection, Drawing Sample) Mobile phase flow with sample drawn into loop

16 Waters system (Injection, Injecting Sample)
Lecture 9 Waters system (Injection, Injecting Sample) Sample is swept from the loop and into the flowing stream.

17 Sample Diluent Effect 50/50 Buffer/MeOH Buffer: 20 mM Citrate, pH=4.6
1- 50/50 MeOH/Water 2 - 80/20 MeOH/Water 3 - 90/10 MeOH/Water 4 - 95/5 MeOH/Water MeOH 50/50 Buffer/MeOH Buffer: 20 mM Citrate, pH=4.6 1 2 3 4 5 Incompatible solvents may cause sample precipitation and column clogging Different eluent pH and composition may cause peak splitting

18 Column Length Column length is a compromise between the efficiency and backpressure Column efficiency is proportional to the column length Specific efficiency (# of particles per one plate) decreases with length increase.

19 Column Overloading 1 ml 5 ml

20 Effect of pH on Aniline UV absorbance
Lecture 9 Effect of pH on Aniline UV absorbance The mobile phase pH at a constant organic composition may have an effect on an ionizable analyte’s UV response. At 232 nm there is a decrease in aniline’s absorbance as this analyte becomes progressively more ionized. A plot of the UV absorbance at a particular wavelength versus the sspH of the mobile phase will lead to a sigmoidal dependence. The inflection point corresponds to the analyte pKa. Abs. sspH sspH 4.2 sspH 3.2 sspH Chromatographic Conditions Column: cm x 0.46 cm Luna C18(2) Eluent: % Aqueous:10% MeCN Aqueous: mM K2HPO4•7H2O adj. to wwpH with H3PO4 Flow rate: 1 ml/min Temp: oC Wavelength (nm)

21 Effect of pH on Aniline Retention and UV response (220 nm)
Lecture 9 Effect of pH on Aniline Retention and UV response (220 nm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Detector Response (mV) wwpH 2 wwpH 4 wwpH 5 wwpH 6 wwpH 9 Time (min.) Chromatographic Conditions Column: cm x 0.46 cm Luna C18(2) Eluent: % Aqueous: 10% MeCN Aqueous: mM K2HPO4•7H2O adj. to wwpH with H3PO4 Flow rate: ml/min Temp: oC Enhanced sensitivity is obtained by analyzing aniline in its neutral state

22 Column Equilibration Column equilibrates within 30 min in normal eluent composition range. Check retention time stability by injecting standard mixture times. Very high organic (>98%) or very high aqueous (>80%) need ~1 - 2 h equilibration at 1 ml/min. In pure water after ~20 h equilibration all analytes elute with void volume. “Chain collapse”? - No. After 20 h of water pumping all organic removed from adsorbent pores. Water is not wetting the alkylated hydrophobic surface. There is no flow through adsorbent particles, only around.

23 Solvent Purity n (moles) =
How much solvent (0.1 ppm total impurity) will contaminate 10% of adsorbent surface? Average column m2/g Assume molecular area of 100 Å2 n (moles) = Assume average 100 g/mole - 3 mg total accumulation this comes from 30 L of solvent with 0.1 ppm total purity Column has to be cleaned at least once a week

24 Gradient High pressure vs. low pressure mixing
System dwell volume effect J.Dolan, LC-GC V.16 #1, 16

25 Column Cleaning Solvent front disturbs phase equilibrium
Release of trapped impurities

26 Method troubleshooting
Problems are usually related to one of the following: System Column Sample Mobile Phase

27 System System-to-system compatibility
Differences in configuration (detector sequence, etc.) Different dwell volume Detector sensitivity always different Wavelength accuracy Bandwidth Environment effects

28 Sample Avoid particulate in the sample Filter Centrifuge Sample vials
Lecture 9 Sample Avoid particulate in the sample Typical cause of inlet filter clogging Filter Centrifuge MD or Qualitative analyses. (Sample filtration can change composition) Usually cumbersome Sample vials Type of the vial cap and septa affect contamination and carry-over Waters systems require 75% filling of 2 mL vial

29 Troubleshooting sequence
Pump Any reciprocal pattern on chromatogram Pressure fluctuations Baseline drift (possible contamination of the solvent) Autosampler Injection marks (baseline disturbance) Cross-contamination Vial fill-in (sample level) Detector Response (baseline noise, drift, etc.) Wavelength (bandwidth, accuracy, etc.)

30 Troubleshooting sequence
First check is always the plumbing (leak, flow rate, pressure) Output (chromatogram) evaluation 1 2 3 1- flow or detection problem 2 – possible injection problem 3 – correct chromatogram

31 Troubleshooting sequence
Analysis of chromatogram Compare with previous results Peak tailing Retention shift Reverse elution


Download ppt "Lecture 9 Yuri Kazakevich Seton Hall University"

Similar presentations


Ads by Google