Download presentation
Presentation is loading. Please wait.
Published byMerry Horton Modified over 9 years ago
1
Nathan Brunelle Department of Computer Science University of Virginia www.cs.virginia.edu/~njb2b/theory Theory of Computation CS3102 – Spring 2014 A tale of computers, math, problem solving, life, love and tragic death
2
Finite Automata Note: Powerset construction generalizes the cross-product construction. More general constructions are possible. EC: Let HALF(L)={v | v,w * |v|=|w| and vw L} Show that HALF preserves regularity. A two way FA can move its head backwards on the input: :Q Q {left,right} EC: Show that two-way FA are not more powerful than ordinary one-way FA. -transitions: Theorem: -transitions don’t increase FA recognition power. Proof: Simulate -transitions FA without using -transitions. i.e., consider -transitions to be a form of non-determinism. qiqi qjqj qiqi qjqj One super-state!
3
Finite Automata Theorem: XOR preserves regularity. Proof: Set identity L 1 L 2 = (L 1 L 2 ) – (L 1 L 2 ) Or cross-product construction, i.e., parallel simulation with F = (F 1 Q –F 2 )) ((Q –F 1 ) F 2 ) Meta-Theorem: Identity-based proofs are easier!
4
The movie “Next” (2007) Based on the science fiction story “The Golden Man” by Philip Dick Premise: a man with the super power of non-determinism! At any given moment his reality branches into multiple directions, and he can choose the branch that he prefers! Transition function!
5
Top-10 Reasons to Study Non-determinism 1.Helps us understand the ubiquitous concept of parallelism / concurrency; 2.Illuminates the structure of problems; 3.Can help save time & effort by solving intractable problems more efficiently; 4.Enables vast, deep, and general studies of “completeness” theories; 5.Helps explain why verifying proofs & solutions seems to be easier than constructing them;
6
Why Study Non-determinism? 6.Gave rise to new and novel mathematical approaches, proofs, and analyses; 7.Robustly decouples / abstracts complexity from underlying computational models; 8.Gives disciplined techniques for identifying “hardest” problems / languages; 9.Forged new unifications between computer science, math & logic; 10.Non-determinism is interesting fun, and cool!
7
Regular Expressions Regular expressions are defined recursively as follows: {}{} trivial language {x} x singleton language Ø empty set q0q0 Inductively, if R and S are regular expressions, then so are: q0q0 q0q0 q1q1 x (R+S) union RS concatenation R*R* Kleene closure Examples:aa(a+b) * bb(a+b) * b(a+b) * a(a+b) * Theorem: Any regular expression is accepted by some FA. M2M2 M1M1 M2M2 M1M1 M Compositions!
8
Regular Expressions A FA for a regular expressions can be built by composition: Ex: all strings over S={a,b} where a “b” preceding an “a” (a+b) * b(a+b) * a(a+b) * = (a+b) * ba(a+b) * baba ba Why? b a b a b a b a b a b a b a b a b a Remove previous start/final states
9
FA Minimization Idea: “Equivalent” states can be merged: b a a,b 3 states! 16 states! b a b a b a b a b a b a b a a,b b a merge
10
FA Minimization Theorem [Hopcroft 1971]: the number N of states in a FA can be minimized within time O(N log N). Based on earlier work [Huffman 1954] & [Moore 1956]. Conjecture: Minimizing the number of states in a nondeterministic FA can not be done in polynomial time. Theorem: Minimizing the number of states in a pushdown automaton (or TM) is undecidable. Project idea: implement a finite automaton minimization tool. Try to design it to run reasonably efficiently. Consider also including: A regular-expression-to-FA transformer, A non-deterministic-to-deterministic FA converter.
11
M FAs and Regular Expressions Theorem: Any FA accepts a language denoted by some RE. Proof: Use “generalized finite automata” where a transition can be a regular expression (not just a symbol), and: Only 1 super start state and 1 (separate) super final state. Each state has transitions to all other states (including itself), except the super start state, with no incoming transitions, and the super final state, which has no outgoing transitions. Original FA M M Ø Ø Ø Ø Ø Ø Ø Ø Ø Generalized FA (GFA) M’ M’
12
FAs and Regular Expressions Now reduce the size of the GFA by one state at each step. A transformation step is as follows: qiqi qjqj q’ R S T P qiqi qjqj P RS * T qiqi qjqj P + RS * T Such a transformation step is always possible, until the GFA has only two states, the super-start and super-final states: Label of last remaining transition is the regular expression corresponding to the language of the original FA! M’ P Corollary: FAs and REs denote the same class of languages.
13
Regular Expressions Identities R+S = S+R R(ST) = (RS)T R(S+T) = RS+RT (R+S)T = RT+ST Ø * = * = R+Ø = Ø+R = R R = R = R (R * ) * = R * ( + R) * = R * (R * S * ) * = (R+S) * R+ ≠ R RØ ≠ R
14
Decidable Finite Automata Problems Def: A problem is decidable if an algorithm which can determine (in finite time) the correct answer for any instance. Given a finite automata M 1 and M 2 : Q 1 : Is L(M 1 ) = Ø ? Hint: graph reachability Q 2 :Is L(M 2 ) infinite ? Hint: cycle detection Q 3 : Is L(M 1 ) = L(M 2 ) ? Hint: consider L 1 -L 2 and L 2 -L 1 M’ M’ -{ Ø Ø
15
Extra credit: use this tool! (to implement some nontrivial TMs, PDAs, grammars, etc.)
16
Give a FA and a regular expression for the following language over the Sesame Street Alphabet: L = {w | w satisfies “i before e except after c”} This means we want any string where an i does not immediately succeed an e, unless we see a c, in which case an e may not succeed an i. Accepted words: believe, fierce, receipt Rejected words: seize, their, science
17
L = {w | w satisfies “i before e except after c”} safe fail i e e c c ci c c c e i e
18
Non-Regular Languages Theorem: Some Languages are not regular. Why? Countable number of Finite State Machines Uncountable number of Languages So some languages not described by a machine! Which languages are not regular? Intuitively: Those that require “memory” to determine membership. e.g.: Now let’s prove it! ℕ
19
Pumping Lemma Goal: Give a sufficient condition for showing non-regularity Consider that L is an infinite regular language Let L(M)=L Let’s say M has p states There must be some String w in L s.t. |w|>p By the pigeon-hole principle: Some state was visited at least twice! Taking that loop another time must give another string in the language. M 1 8 12 20 p 3 x2
20
Pumping Lemma If L is a regular language then there is some number p (called pumping length) where if w is a string in L s.t. |w|>p then w can be divided into 3 pieces: w=xyz which satisfy: 1.For each i≥0, L 2.|y|>0 3.|xy|≤p Example: Consider: By condition 3 we know: Thus for i=2 we have more a’s than b’s, so L cannot be regular M 1 8 12 20 p 3 x y z ℕ
21
Pumping Lemma 1.For each i≥0, L 2.|y|>0 3.|xy|≤p Show: is not regular Consider By condition 3 we know y, this leaves 6 cases: 1.y 2.y 3.y 4.y 5.y 6.y Problem: in all of these I only change the first half! I needed to “remember” the first half of the string.
22
Pumping Lemma 1.For each i≥0, L 2.|y|>0 3.|xy|≤p Show: is not regular Consider where q is a prime greater than p y must have only a’s, let y= where m≤p For i=p+1 we have Clearly, p(m+1) is not prime For let then So
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.