Presentation is loading. Please wait.

Presentation is loading. Please wait.

Maxwell’s Equations in Matter Free current density from unbound conduction electrons (metals) Polarisation current density from oscillation of charges.

Similar presentations


Presentation on theme: "Maxwell’s Equations in Matter Free current density from unbound conduction electrons (metals) Polarisation current density from oscillation of charges."— Presentation transcript:

1 Maxwell’s Equations in Matter Free current density from unbound conduction electrons (metals) Polarisation current density from oscillation of charges as electric dipoles Magnetisation current density from space/time variation of magnetic dipoles M = sin(ay) k k i j j M = curl M = a cos(ay) i Total current Types of Current j

2 Maxwell’s Equations in Matter  D/  t is displacement current postulated by Maxwell (1862) to exist in the gap of a charging capacitor In vacuum D =  o E and displacement current exists throughout space

3 Maxwell’s Equations in Matter in vacuum in matter .E =  /  o .D =  free Poisson’s Equation .B = 0 .B = 0 No magnetic monopoles  x E = -∂B/∂t  x E = -∂B/∂t Faraday’s Law  x B =  o j +  o  o ∂E/∂t  x H = j free + ∂D/∂t Maxwell’s Displacement D =  o  E =  o (1+  )EConstitutive relation for D H = B/(  o  ) = (1-  B )B/  o Constitutive relation for H Solve with: model  for insulating, isotropic matter,  = 1,  free  = 0, j free = 0 model  for conducting, isotropic matter,  = 1,  free  = 0, j free =  (  )E

4 Maxwell’s Equations in Matter Solution of Maxwell’s equations in matter for  = 1,  free  = 0, j free = 0 Maxwell’s equations become  x E = -∂B/∂t  x H = ∂D/∂t H = B /  o D =  o  E  x B =  o  o  ∂E/∂t  x ∂B/∂t =  o  o  ∂ 2 E/∂t 2  x (-  x E) =  x ∂B/∂t =  o  o  ∂ 2 E/∂t 2 -  ( .E) +  2 E =  o  o  ∂ 2 E/∂t 2 .  E = . E = 0 since  free  = 0  2 E -  o  o  ∂ 2 E/∂t 2 = 0

5 Maxwell’s Equations in Matter  2 E -  o  o  ∂ 2 E/∂t 2 = 0 E(r, t) = E o e x Re{e i (k.r -  t) }  2 E = -k 2 E  o  o  ∂ 2 E/∂t 2 = -  o  o  2 E (-k 2  +  o  o  2 )E = 0  2 = k 2 /(  o  o  )  o  o   2 = k 2 k = ±  √(  o  o  ) k = ± √   /c Let  =  1  + i  2  be the real and imaginary parts of  and  = (n  + i  ) 2 We need √  = n  + i   = (n  + i  ) 2 = n 2  -  2 + i 2n   1  = n 2  -  2  2  = 2n  E(r, t) = E o e x Re{ e i (k.r -  t) } = E o e x Re{e i (kz -  t) } k || e z = E o e x Re{e i ((n + i  )  z/c -  t) } = E o e x Re{e i (n  z/c -  t) e -  z/c) } Attenuated wave with phase velocity v p = c/n

6 Maxwell’s Equations in Matter Solution of Maxwell’s equations in matter for  = 1,  free  = 0, j free =  (  )E Maxwell’s equations become  x E = -∂B/∂t  x H = j free + ∂D/∂t H = B /  o D =  o  E  x B =  o j free +  o  o  ∂E/∂t  x ∂B/∂t =  o  ∂E/∂t +  o  o  ∂ 2 E/∂t 2  x (-  x E) =  x ∂B/∂t =  o  ∂E/∂t +  o  o  ∂ 2 E/∂t 2 -  ( .E) +  2 E =  o  ∂E/∂t +  o  o  ∂ 2 E/∂t 2 .  E = . E = 0 since  free  = 0  2 E -  o  ∂E/∂t -  o  o  ∂ 2 E/∂t 2 = 0

7 Maxwell’s Equations in Matter  2 E -  o  ∂E/∂t -  o  o  ∂ 2 E/∂t 2 = 0 E(r, t) = E o e x Re{e i (k.r -  t) } k || e z  2 E = -k 2 E  o  ∂E/∂t =  o  i  E  o  o  ∂ 2 E/∂t 2 = -  o  o  2 E (-k 2  -  o  i  +  o  o  2 )E = 0  o  for a good conductor E(r, t) = E o e x Re{ e i (√(  o / 2 )z -  t) e -√(  o / 2 )z } NB wave travels in +z direction and is attenuated The skin depth  = √(2/  o ) is the thickness over which incident radiation is attenuated. For example, Cu metal DC conductivity is 5.7 x 10 7 (  m) -1 At 50 Hz  = 9 mm and at 10 kHz  = 0.7 mm


Download ppt "Maxwell’s Equations in Matter Free current density from unbound conduction electrons (metals) Polarisation current density from oscillation of charges."

Similar presentations


Ads by Google