Download presentation
Presentation is loading. Please wait.
Published byDiane McDowell Modified over 9 years ago
1
Sizes
2
Positronium and e + -e - Annihilation Gamma-Gamma Correlations 2 E /2E 0 1 dN/dE E /2E 0 1 dN/dE Decay at rest: 2E ≈E 0 ≈ 1.022 MeV 2-body decay 12 ≈180 0 3-body decay continuum in E and 2-body decay line spectrum in E and Para Positronium Ortho Positronium
3
Gamma-Gamma Correlations 3 Radiation Detectors for Medical Imaging Positron e + (anti-matter) annihilates with electron e - (its matter equivalent of the same mass) to produce pure energy (photons, -rays). Energy and momentum balance require back-to-back (180 0 ) emission of 2 -rays of equal energy Detectors (NaI(Tl)) Positron emission tomographic (PET) virtual slice through patient’s brain Administer to patient radioactive water: H 2 17 O radioactive acetate: 11 CH 3 COOX Observe 17 O or 11 C + decay by
4
ANSEL Angular Correlation Experiment Gamma-Gamma Correlations 4 Top left: PET imaging experiment setup with two 1.5”x1.5” NaI(Tl) detectors (BICRON) on a slotted correlation table. A “point-like” 22 Na source can be hidden from view. Top right: 22 Na spectrum measured with NaI 1. Bottom right: angular correlation measurement. Second correlation setup: NaI(Tl) vs. HPGe
5
Gamma-Gamma Correlations 5 E 1 -E 2 -t Multi-Parameter Measurement cascade ( 60 Ni) or PET experiment, full 3D energy-time distribution. Delay var. TFA/C FTD Gate Gener ator Pre Amp Amp Energy 1 Relative Time Pre Amp TFA/C FTD Gate Gener ator Amp TAC t Energy 2 Start Stop Counter DAQ Pulse Gener ator Counter Pulser Dead time measurement
6
Gamma-Gamma Correlations 6 E 1 -E 2 Dual-Parameter Measurement cascade ( 60 Ni) or PET experiment, full 2D spectrum Delay var. TFA/ CFTD Gate Gener ator Pre Amp Amp Energy 1 Strobe Pre Amp TFA/ CFTD Gate Gener ator Amp Energy 2 Pulse Gener ator Counter Pulser Dead time measurement Coincid. OR DAQ
7
2D Parameter Measurement Gamma-Gamma Correlations 7 2D Scatter Plot: Each point represents one event {E 1, E 2 } E2E2 E1E1 Projection on E 2 axis Projection on E 1 axis
8
Gamma-Gamma Correlations 8 Gated E 1 -E 2 Coincidence Measurement cascade ( 60 Ni) or PET experiment, gates on and lines Delay var. SCA Gate Gener ator Amp Energy 1 Strobe Amp SCA Gate Gener ator Energy 2 Pulse Gener ator Counter Pulser Dead time measurement Coincid. OR DAQ
9
Gamma-Gamma Correlations 9 Absolute Activity Measurement N1N1 N2N2 N 12 TFA/ CFTD Gate Gene rator Pre Amp TFA/ CFTD Gate Gene rator Coincid ence Counter Coinc. Counter 1 Counter 2 1 2 Activity A Activity A [disintegrations/time], independent radiation types i =1,2 detection probabilities P i
10
Sizes
11
Symmetries of the Nuclear Mean Field Gamma-Gamma Correlations 11 Potential Bound States r (r) 0 Nucleon-nucleon forces are dominantly radial r r n=0 n=1 n=2
12
Gamma-Gamma Correlations 12 Stationary Nuclear States Consequences of space-inversion and rotational invariance: Stationary states eigen states are also eigen states of Radial (r) and angular () degrees of freedom are independent Separate d.o.f in Schrödinger Equ. Product wave functions r Spherical Harmonics or (axial symmetry) Legendre Polynomials r n=0 n=1 n=2 I2+I2+ 1-1- 0+0+ EnEn
13
Gamma-Gamma Correlations 13 Electromagnetic Nuclear Transitions Conserved: Total energy (E), total angular momentum (I) and total parity (): I2+I2+ 1-1- 0+0+ EiEi I2+I2+ 1-1- 0+0+ EfEf Consider here only electric multipole transitions. Neglect weaker magnetic transitions due to changes in current distributions.
14
t-Dependent Electromagnetic Radiation Fields Gamma-Gamma Correlations 14 Point Charges Nuclear Charge Distribution Monopole ℓ = 0 Dipole ℓ = 1 Quadrupole ℓ =2 Protons in nuclei = moving charges emits elm. radiation Heinrich Hertz Propagating Electric Dipole Field E. Segré: Nuclei and Particles, Benjamin&Cummins, 2 nd ed. 1977
15
Gamma-Gamma Correlations 15 Selection Rules for Electromagnetic Transitions Conserved: Total energy (E), total angular momentum (I) and total parity (): z mimi mfmf mm Coupling of Angular Momenta Quantization axis : z direction. Physical alignment of I possible (B field, angular correlation)
16
Gamma-Gamma Correlations 16 Spherical Harmonics P 1 |m| cos (m z x y Plot Re Y l m P 1 |m| cos (m Emission in z direction Emission perpend. to z
17
Angular Correlations Gamma-Gamma Correlations 17 Simple example: cascade 0 1 0 Mostly m=±1 emitted in z-direction Det 1 Det 2 1 =0 22 11 22 Det 1: Define z, select transition with maximum intensity for =0. Det 2: Measure emission patterns with respect to this z direction determine m. General Expression for angular correlation Typically: n ≤ 2. Legendre Polynomials P n (cos)
18
E2 Angular Correlations Gamma-Gamma Correlations 18 Anisotropy Example: Rotational E2- cascade, m=±2 maximally emitted in z-direction After: G. Musiol, J. Ranft, R. Reif, D. Seeliger, Kern-u. Elementarteilchenphysik, VCH 1988
19
Gamma-Gamma Correlations 19
20
Gamma-Gamma Correlations 20
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.