Download presentation
Published byLinda Wheeler Modified over 9 years ago
1
-Artificial Neural Network- Counter Propagation Network
朝陽科技大學 資訊管理系 李麗華 教授
2
Introduction (1/4) Counter Propagation Network(CPN)
- Defined by Robert Hecht-Nielsen in 1986, CPN is a network that learns a bidirectional mapping in hyper-dimensional space. - CPN learns both forward mapping (from n-space to m-space)and, if it exists, the inverse mapping (from m-space to n-space) for a set of pattern vectors. X1 X2 ‧ Xn Y1 Ym 朝陽科技大學 李麗華 教授
3
Introduction (2/4) -Counter Propagation Network (CPN) is a an unsupervised winner-take-all competitive learning network. -The learning process consists 2 phases: The kohonen learning (unsupervised) phase & the Grossberg learning(supervised) phase. 朝陽科技大學 李麗華 教授
4
Introduction (3/4) - The Architecture: H1 wih X1 whj X2 H2 ‧ Y1 Xn Ym
Hh Kohonen Learning Grossberg H1 wih whj Y1 Ym 朝陽科技大學 李麗華 教授
5
Introduction (4/4) Input layer : X=[X1, X2, …….Xn]
Hidden layer: also called Cluster layer, H=[H1, H2, …….Hn] Output layer: Y=[Y1, Y2, ……Ym] Weights : From InputHidden: Wih , From HiddenOutput : Whj Transfer function: uses linear type f(netj)=netj 朝陽科技大學 李麗華 教授
6
The learning Process(1/2)
Phase I: (Kohonen unsupervised learning) (1)Computes the Euclidean distance between input vector & the weights of each hidden node. (2)Find the winner node with the shortest distance. (3)Adjust the weights that connected to the winner node in hidden layer with △Wih* = η1(Xi - Wih* ) Phase II: (Grossberg supervised learning) Some as (1)& (2)of phase I Let the link connected to the winner node to output node is set as 1 and the other are set to 0. Adjust the weights using △Wij = η2‧δ‧Hh 朝陽科技大學 李麗華 教授
7
The learning Process(2/2)
The recall process: Set up the network Read the trained weights. Input the test vector, X. Computes the Euclidean distance & finds the winner where the winner hidden node output 1 and the other output 0. Compute the weighted sum for output nodes to derive the prediction (mapping output). 朝陽科技大學 李麗華 教授
8
The computation of CPN (1/4)
Phase I:(Kohonen unsupervised learning) Set up the network. Randomly assign weights, Wih Input training vector, X=[X1, X2, …….Xn] Compute the Euclidean Distance to find the winner node, H* or 5. Hh * 1 h=h otherwise ì = í î if 朝陽科技大學 李麗華 教授
9
The computation of CPN (2/4)
6. Update weights △Wih* = η1(X1-Wih*) Wih* = Wih* + △Wih*. 7. Repeats 3 ~ 6 until the error value is small & stable or the number of training cycle is reached. 朝陽科技大學 李麗華 教授
10
The computation of CPN (3/4)
Phase II:(Grossberg supervised learning) Input training vector Computes 4 & 5 of Phase I net j = ΣWhj‧ Hh Yj = net j 朝陽科技大學 李麗華 教授
11
The computation of CPN (3/4)
3. Computes error :δj = (T j - Yj) 4. Updates weights:△W * hj = η2‧δj‧H h* W h* j = Wh* j + △Wh* j 5. Repeats 1 to 4 of Phase II until the error is very small & stable or the number of training cycle is reached. 朝陽科技大學 李麗華 教授
12
The recall computation
Set up the network. Read the trained weights, Wih Input testing vector (pattern), X=[X1, X2, …….Xn] Compute the Euclidean Distance to find the winner node, H* Hh * 1 h=h otherwise ì = í î if net j = ΣWhj‧ Hh Yj = net j 朝陽科技大學 李麗華 教授
13
The example of CPN (1/2) Ex:Use CPN to solve XOR problem X1 X2 T1 T2
-1 1 Y1 Ym X1 X2 H1 H2 H3 H4 0.5 -0.5 Randomly set up the weights of Wih & Whj 朝陽科技大學 李麗華 教授
14
The example of CPN (2/2) Sol: 以下僅介紹如何計算Phase I (Phase II 計算上課說明)
(1) 代入X=[-1,-1] T=[0,1] net1 =[-1-(-0.5)]2 + [-1-(-0.5)]2 = (-0.52) + (-0.52) = 0.5 net2 =[-1-(-0.5)]2 + [ 1-(-0.5)]2 = (-0.52) + ( 1.52) = 2.5 net3 = 2.5 net4 = 4.5 ∴ net 1 has minimum distance and the winner is h* = 1 (2) Update weights of Wih* △W11 = (0.5) [-1-(-0.5)] = -0.25 △W21 = (0.5) [-1-(-0.5)] = -0.25 ∴ W11 = △W11 + W11 = -0.75, W21 = △W21 + W21 = -0.75 朝陽科技大學 李麗華 教授
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.